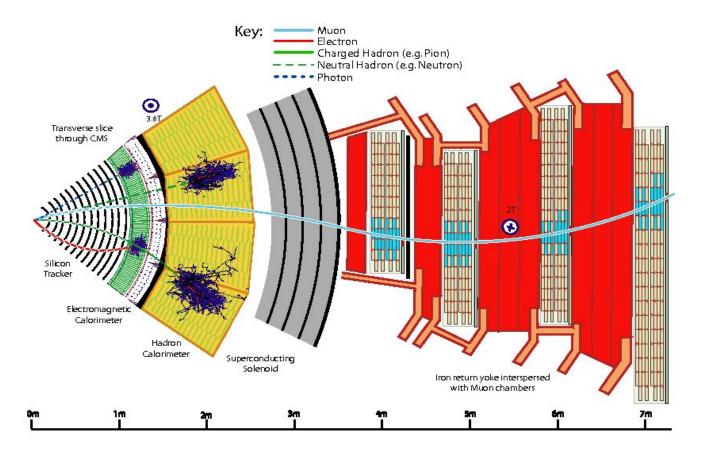
e/γ reconstruction & identification in CMS

Anirban Bala DHEP, TIFR


[arXiv: 2012.06888]

1

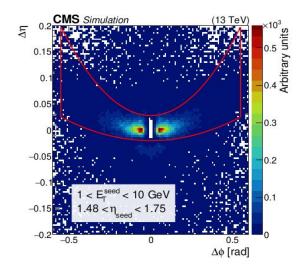
Introduction

- > e/γ are reconstructed with high purity & efficiency in CMS.
- Distinctive signal in electromagnetic calorimeter (ECAL) as an isolated energy deposit associated with a trace in the 'Si' tracker in case of electrons.
- The main topics that will be covered in this talk:
 - Short description of the CMS detector
 - Offline e/γ reconstruction
 - Online e/γ reconstruction
 - Difference between offline & online reconstruction
 - Electron & photon selection
 - Photon identification
 - Electron identification

Cross-sectional view of the CMS detector

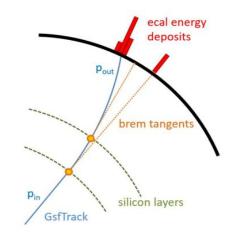
Short description of the CMS detector

- **The magnet:** central feature of the CMS detector is a large superconducting solenoid magnet. It delivers an axial & uniform magnetic field of 3.8T which helps to separate the calorimeter energy deposits of charged & neutral particles.
- The silicon inner tracker: provides a pure & efficient charged-particle trajectory reconstruction in jets with p_{τ} upto around 1 TeV.
- **Highly-segmented ECAL:** homogeneous calorimeter made of lead tungstate (PbWO₄) crystals, sufficient to contain more than 98% of the energy of electrons & photons upto 1 TeV. Two thirds of the hadrons also start showering in the ECAL before entering the HCAL. A much finer-grained detector, called **preshower**, is installed in front of each endcap disk. The aim of the preshower \Rightarrow (1) to discriminate between prompt photons & photons coming from π^0 decay (2) to indicate the presence of electron or photon by requiring an associated signal in the preshower.
- **HCAL:** sampling calorimeter consisting of brass absorber & plastic scintillator. Charged & neutral hadrons may initiate a hadronic shower in ECAL, which is fully absorbed in the HCAL.
- **The muon detectors:** muons produce hits in additional tracking layers located outside the calorimeters.


Offline e/γ reconstruction

Overview

- Electrons & photons deposit almost all of their energy in ECAL, whereas hadrons deposit in HCAL.
- ➤ In addition, electrons produce hits in the tracker.
- ➤ Electrons ⇒ bremsstrahlung photons, photons ⇒ electron positron pairs; thus when electron or photon reaches the ECAL, it may consist of a shower of particles.
- ➤ A dedicated algorithm to combine clusters of particles into a single object to recover the energy of primary electron or photon ⇒ Gaussian Sum Filter (GSF).
- The energy reconstruction algorithm starts with a formation of clusters (> 80 MeV in EB,
 > 300 MeV in EE). Seed consist of most energy deposits (> 1 GeV).
- Some neighbouring clusters around the SC to include pair production & brem. loss superclustering
- > All objects with an associated GSF track ⇒ electrons; without a GSF track ⇒ photons


Superclustering in ECAL

- Because of showering the original object may consist of several e/γ produced from pair production/brem.
- The multiple ECAL clusters need to be combined into a single SC \Rightarrow superclustering
- There are mainly two algorithms ⇒
 - "Mustache" algorithm
 - "Refined" algorithm
- "Mustache" algorithm ⇒ useful for low-energy deposits. It uses information only from ECAL & preshower. The size of the mustache region depends on E_T
- "Refined" algorithm ⇒ It uses the tracking information. At each tracker layer, the trajectory of the GSF track is extrapolated to form a "brem. tangent", which can be linked to a compatible ECAL cluster. Clusters linked to the "brem. tangent" are then added to the refined SC.

Electron track reconstruction

- Electrons use the GSF tracking algorithm to include radiative losses from brem.
- The GSF track fitting algorithm is CPU intensive, so can't be run over all reconstructed hits in the tracker. The electron trajectory seed can be either "ECAL-driven" or "tracker-driven".
- ➢ ECAL driven seeding first selects mustache SCs with E_{sc} > 4 GeV & H/E_{sc} < 0.15. It performs better for high E_T electrons.
 ➢ Tracker driven seeding is performed only in offline
- > Tracker driven seeding is performed only in offline reconstruction, not in HLT, as it is computationally expensive to reconstruct all tracks in an event. This approach is designed for low E_T electrons.
- The final collection of selected electron seeds is used to initiate the reconstruction of electron tracks.
- ▶ We have to use track-SC matching variables to associate a GSF track to an ECAL cluster. $|\Delta \eta| = |\eta_{SC} \eta_{track}| < 0.02 \& |\Delta \varphi| = |\varphi_{SC} \varphi_{track}| < 0.15$

Online e/γ reconstruction

Overview

- e/γ candidates at L1 are based on ECAL trigger towers defined by arrays of 5x5 crystals.
- The central trigger tower with highest E_{τ} (> 2 GeV) is designated as the seed tower.
- To recover energy loss from brem, clusters are built from surrounding towers with $E_T > 1$ GeV to form L1 candidates.
- No tracker information is available at L1, so electrons & photons are indistinguishable at this stage.
- The HLT electron & photon candidates are reconstructed from energy deposits in ECAL crystals grouped into clusters around L1 seed.
- Electron & photon selection at HLT relies on the identification & isolation criteria that will be discussed later.

Difference between online & offline reconstruction

- > The differences between the HLT & offline reconstruction are mainly driven by:
 - The limited CPU time available at the HLT.
 - The lack of final calibrations which are not yet computed during the data-taking period.
 - More conservative selection criteria to avoid rejecting interesting events.
- > Every electron candidate reconstructed at the HLT is ECAL driven.
- Offline tracker driven reconstruction is useful only for low energy electrons, which is not easy to trigger.

e/γ selection

Overview

- Two different techniques are used in CMS for the identification of electrons & photons.
 - Cut-based approach
 - MVA-based approach (will not be discussed in this talk)
- Different strategies are used to identify prompt electrons & photons.
- For prompt electrons, bkg can originate from photon conversion, hadrons misidentified as electrons, secondary electrons coming from semi-leptonic decays of b-quark.
- The main bkg to prompt photons are photons coming from π^0 decay.

Isolation criteria

- One of the methods to reject electron & photon bkg is the use of isolation energy sums.
- > At first a cone is defined in η - φ plane; the distance with respect to the reconstructed electron or photon direction is defined by ΔR (= 0.3).
- > The electron or photon itself is excluded from the isolation sum.

$$I_{\mathrm{PF}} = rac{1}{p_{\mathrm{T}}} \left(\sum_{\mathrm{h}^{\pm}} p_{\mathrm{T}}^{\mathrm{h}^{\pm}} + \sum_{\gamma} p_{\mathrm{T}}^{\gamma} + \sum_{\mathrm{h}^{0}} p_{\mathrm{T}}^{\mathrm{h}^{0}}
ight)$$

Shower shape criteria

- Three main shower shape variable that will be discussed:
 - **H/E**
 - ο **σ**_{iηiη}
 - R₉
- H/E ⇒ ratio between the energy deposited in HCAL in a cone of ΔR = 0.15 around the SC & the energy of the e/γ candidate. HCAL noise, pileup, leakage of electrons or photons through the inter-modular gaps ⇒ 'H'. H < X + Yp + JE; X & Y represent the noise & pileup (PU) terms, J is scaling term for high energy electron or photon.

•
$$\sigma_{i\eta i\eta} \Rightarrow$$

 $\sigma_{i\eta i\eta} = \sqrt{\frac{\sum_{i}^{5 \times 5} w_i (\eta_i - \overline{\eta}_{5 \times 5})^2}{\sum_{i}^{5 \times 5} w_i}}$. $w_i = \max (0, 4.7 + \ln(E_i/E_{5 \times 5}))$

• $R_9 \Rightarrow$ defined as E_{3x3}/E_{SC} . Showers of photons that convert before reaching the calorimeter have wider transverse profiles & lower values of R_9 than unconverted photons.

Photon identification

Cut-based photon identification

- The "loose" working point (WP) has an average signal efficiency of about 90%, used when bkg is low.
- The "medium" & "tight" WP have an average efficiency of about 80% & 70% respectively, used when bkg is larger.

Variable	Barrel (tight WP)	Endcap (tight WP)
H/E	< 0.021	< 0.032
$\sigma_{i\eta i\eta}$	< 0.0099	< 0.027
$I_{\rm ch}$	<0.65 GeV	<0.52 GeV
I _n	$< 0.32 \text{GeV} + 0.015 E_{\text{T}} +$	$< 2.72 \text{GeV} + 0.012 E_{\text{T}} +$
	$2.26 \times 10^{-5} E_{\rm T}^2/{ m GeV}$	$2.3 \times 10^{-5} E_{\rm T}^2/{ m GeV}$
I_{γ}	$< 2.04 \text{GeV} + 0.0040 E_{\text{T}}$	$< 3.03 \text{GeV} + 0.0037 E_{\text{T}}$

Electron identification

Cut-based electron identification

Variable	Barrel (tight WP)	Endcaps (tight WP)
$\sigma_{i\eta i\eta}$	< 0.010	< 0.035
$ \Delta \eta_{\rm in}^{\rm seed} $	< 0.0025	< 0.005
$ \Delta \phi_{ m in} $	<0.022 rad	<0.024 rad
H/E	$< 0.026 + 1.15 \text{GeV} / E_{\text{SC}}$	$< 0.019 + 2.06 \text{GeV} / E_{\text{SC}}$
	$+0.032 \rho / E_{\rm SC}$	$+0.183 \rho / E_{\rm SC}$
$I_{\text{combined}}/E_{\text{T}}$	$< 0.029 + 0.51 \text{GeV} / E_{\text{T}}$	$< 0.0445 + 0.963 \mathrm{GeV}/E_{\mathrm{T}}$
1/E - 1/p	$< \! 0.16 { m GeV}^{-1}$	${<}0.0197{ m GeV}^{-1}$
Number of missing hits	≤ 1	≤ 1

- First of all, a brief overview of CMS detector has been discussed.
- Then I discussed about the offline electron & photon reconstruction.
- Next online e/γ reconstruction has been described briefly.
- After that I discussed how e/γ can be selected using isolation & shower shape criteria.
- At last only the cut-based approach of e/γ identification has been discussed.

