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What can you expect from
the Lectures

Lecture 1: Basic Concepts
Histograms, PDF, Testing Hypotheses,
LR as a Test Statistics, p-v-alue, POWER, CLs
Measurements

Lecture 2: Wald Theorem, Asymptotic Formalism, Asimov- Data
Set, Feldman-Cousins, PL & CLs

B Lecture 3: Asimov Significance
Look Elsewhere Effect
1D LEE the non-intuitiv-e thumb rule
(upcrossings, trial #~2)
2D LEE (Euler Characteristic)
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/Su,pport Material

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.
PDG

L. Lista Statistical methods for Data Analysis, 2nd Ed. Springer, 2018

G. Cowan PDG
http://pdg.lbl.goVv-/2.01#/rev-iews/rppd

O1#-rev-statistics.pdf
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/Backgamm

What is the probability

to toss exactly 3 times
6:6 in 10 rounds?
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The probability to toss 6:6 exactly 3 times, in 10 rounds is
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"In a Nut Shell

The binomial distribution with parameters n and p

is

the discrete probability distribution of the number of
successes in a sequence of n independent experiments,

(Wikipedia)
n \ k n—k
P(k:n,p)= p (I-p)
k)
f X ~ B(n, p)
ElX]|=np
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P(k :n,p)—12==2 5 Poj
0iss(k; ) =
If X ~ Poiss(k;A) |
E[X]=Var[X]=A1




\
From Binomial to Poisson to Gaussian
/M\

P(k:n,p){ Z )p"(l—p)”‘"

. /lk —k -// -\\
P(k : n, p)—==2= 5 Poiss(k; 1) = lj — e
<k> =A, 0, = Ji
k—oo=x=k
Using Stirling Formula
1 —(x=A)’ 1207

prob(x)=G(x,0 = 1) = N

This is a Gaussian, or Normal distribution

with mean and variance of A




P
Histograms

N collisions

Lo(pp — H) Ae
p(Higgs event) = (P ) Acy
Lo(pp)
Prob to see n}’ in N collisions is
P(”st):£ obs ]an 1-p)* ™ T
nH
—A 7 n%% :
A" %
lim,_ P(ny’)= Poiss(n}’ ,A) = ‘ — mass
n, !
Lo(pp— H) Ae
A=Np=Lo(pp) wp 2 M)Ay '

Lo(pp)
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/pdf

X is a random Variable
Probability Distribution Function
PDF

P(z € |z, x + dz]) = f(z)dx

°c , XoaE T LR N
f (I‘)dl’ =1 ’ 0.352—
> 03f
f(x) is not a probability 025F
F(x)dx is a probability. 02E
015
G(II?LLL’ 0) 0'15_
s a parametrized pdf ([, ) °SF
| N R R R

We would like to make inference about the pardmeters

FRnia n:T;‘_;%
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4 . .
A counting experiment

» The Higgs hypothesis is that of signal s(m )
s(m,)=Lo, -A-¢€
For simplicity. unless otherwise noted s(m,)=Lo

o In a counting experiment n=us(m, )+b

— Lo-obs(mH) — Gobs(m]-])
Lo, (m,) oy (m,)

7

o uis the strength of the signal (with respect to the expected
Standard Model one)

o The hypotheses are therefore denoted by H

o H,is the SM with a Higgs, H, is the background only model

;"‘V‘i;‘ [L#3 Eilam Gross Statistics in PP
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"ATale of Two Hy.potheses

NULL ALTERNATE

o Test the Null hypothesis and try to reject it

o Fail to reject it OR reject it in fav-or of the
alternativ-e hypothesis

TR ]l E ] . e .
.:i.'"f‘,;;r Eilam Gross Statistics in PP
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"ATale of Two Hy.potheses

ALTERNATE

NULL

Ho- SM w/o0 Higgs

» Test the Null hypothesis and try to reject it

o Fail to reject it OR reject it in fav-or of the
alternativ-e hypothesis
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"ATale of Two Hy.potheses

ALTERNATE

NULL

Ho- SM w/0 Higgs

We quantify rejection by p-vralue (later)

fRTAR % Eilam Gross Statistics in PP




4 R
Swapping Hy.potheses>exclusion

NULL ALTERNATE

Ho- SM w/0 Higgs

H,- SM with Higgs

o Reject H, in fav-or of H,

Excluding H, (m,)>Excluding the Higgs
with @ mass m,

We quantify rejection by p-vralue (later)

.'n % Eilam Gross Statistics in PP /




/L.ikelihood

o Likelihood is the L(H)= L(H | x)
compatibility of the L(H |x)=P(x|H)
Hy.pothesis with a giv-en
data set.

But it depends on the
data

Bayes Theorem
Likelihood is not the
probability of the P(H | x)=
hy.pothesis giv-en the
data

P(x|H)- P(H)
> P(x|H)P(H)
P(H |x)=~ P(x| H)- P(H)

Bl IS Eilam Gross Statistics in PP
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/Frequentist Vs Bay.esian

« The Bayesian infers from the data using priors
posterior P(H | X) ~ P(X| H). P(H)

e Priorsis a science on its own.
Are they objectiv-e? Are they subjectiv-e?

o The Frequentist calculates the
probability of an hypothesis to
be inferred from the data based
on a large set of hypothetical experiments
Ideally, the frequentist does not need priors, or any
degree of belief while the Baseian posterior based inference is
a “Degree of Belief”.

e However, NPs (Systematic) inject a Bayesian flav-our to any
Frequentist analysis

R % Eilam Gross Statistics in PP J
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A Poisson distribution describes
a discrete ev-ent count n for
o real vralued Mean /.
| e H
Pois(n|p) = " ——
n!
Say, we observe n_events

What is the likelihood of u?
The likelihood of u is given by
L(w) = Pois(n, | 1)

[t is a continues function
of w butitis NOT a PDF

R n:g;%
R TR0 Eilam Gross Statistics in PP

"Likelihood is NOT a PDF

o 3 6 _ 9 12

M

Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)

15




4 : ,
Testing an Hypothesis (uikipedia...)

o The first step in any hypothesis test is to state the relev-ant
null, H, and alternativ-e hypotheses, say, H,

» The next step is to define a test statistic, q, under the null
hypothesis

« Compute from the observ-ations the observ-ed v-alue q , of the
test statistic q.

. Decide (based on q , ) to either

Fail to reject the null hypothesis or
reject it in fav-or of an alternativ-e hypothesis

o next: How to construct a test statistic, how to decide?

BTl =1 Eilam Gross Statistics in PP
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Test statistic and p-v-alue
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Case Study 1: Spin
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Spin O \rs Spin 1 Hy.potheses

Null Hypothesis H, = Spin 0
Alt Hypothesis H = Spin 1

J=0 J=1

(128-
\EFI.




/Sp'm O vs Spin 1 Hypotheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1

100




/Sp'm O vs Spin 1 Hypotheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1

100




s .
Spin O vs Spin 1 Hy.potheses

N avents
150

Null Hypothesis H, = Spin 0
Alt Hypothesis H, = Spin 1

100,




e
The Neyman-Pearson Lemma

L(H)

L(H,)

o When performing a hypothesis test between two
simple hypotheses, H, and H,, L(H)
the Likelihood Ratio test, A = L(Hl)

which rejects H, in fav-or of H,,

is the most powerful test
for a given significance level o= prob(A<n)
with a threshold n

o Define a test statistic A\ =

,',W“;‘ EJ-J%I L% Eilam Gross Statistics in PP
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"Building PDF

Build the pdf of the test statistic

N experimants

1.0}

0.8}

0.6¢

0.4-

0.2}

0.0

-10

-5

5 10 15 ~2Log(LIONL(T))

N events

150

100}

06 10 15

20 25 30




" Building PDF

Build the pdf of the test statistic

L(H |x)
= x)=-21ln 0
qNP qu( ) L(H1 |x)
N experiments h1| ::cnls

100
80} m ]
60
40}
20 H
ot | 0 -5 0 h; 75 ~2Log (LOYL{1)




tolerance towards mistakes...
(accepted mistakes frequency)

o type-lerror: the probability to
reject the tested (null) hypothesi
(Ho) when it is true

. o =Prob(reject H,| H,)
o = typel error

o Typell: The probability to accept
null hypothesis when it is wrong

B =Prob(accept H,| H,) —
B =typell error

M s
Basic Definitions: type I-ll errors

o By defining x you determine your

o The pdf of q....

"; i | "hh}:,,o

™~

. \
S50 30 AN 1 30 flf;\ :

o=significance 1-B

=0
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"Basic Definitions: POWER

o = Prob(reject H, | H,)

The POWER of an hypothesis

test is the probability to reject

the null hypothesis when it is indeed
wrong

(the alternate analysis is true)

POWER = Prob(reject H, | H,)
ﬁ = Prob(accept HO |ﬁ0)
1— ,3 = Prob(reject HO | HO)

H =H

0 1

™~

POWER = Prob(reject H,| H,)
H =H,

H,

1— B = Prob(reject H | H))

The power of a test increases as
the rate of type Il error decreases

f-;s.sz;" 33 n:n__g Eilam Gross Statistics in PP
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/p-Va,lu.e

« The observ-ed p-vralue is a measure of the
compatibility of the data with the tested
hy.pothesis.

o It is the probability, under assumption of the null
hypothesis H,,, of finding data of equal or

greater incompatibility with the predictions of H

null

o An important property of a test statistic is that its
sampling distribution under the null hypothesis be
calculable, either exactly or approximately, which
allows p-v-alues to be calculated. wu

i ni % Eilam Gross Statistics in PP /
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" PDF of a test statistic
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"PDF of a test statistic

1200 T
1000
200

600

If p=<a reject null

o

f(q Ealt)

p-v-alue (prun):
The probability., under
assumption of the null
hypothesis H,,, of finding
data of equal or greater
incompatibility with the
predictions of H

null




" PDF of a test statistic

If psa reject null

lzm I | EEL L) l | [N | | I | I ' ] ' T 1 | C ] T I

1000 [~

f(q | null

200

Palt:

The probability.,
under assumption of
the alt hypothesis H,,
of finding data of
equal or greater
incompatibility with
the predictions of H,,

01_1_1_.1_4.-#’711'!
-15 -12 -5

f(q |alt)

q 1obs

Nulllike ) 2|t like
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" PDF of a test statistic

If p<a reject null

1200 L B T T L T
POWER =Prob(rej H, ,
oo ~:
O i 1 B palt
400 o
200
Lo s

U1 ASEL
] Nt
.

-
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Null like  p—————) |t like
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4 o
Power and Luminosity

For a giv-en significance the power increases with increased luminosity.

Luminosity ~ Total number of events in an experiment

N avents
150

100




N experiments

250 95% HO 0 = 5%
200;— H1 asimov
150,
e 58°
50 _
ol [T -2Log(L(0)/L(1))

-10 -5 0 5 10 15




N experiments

250 95% HO 0t = 5%
200} H1 asimov
150/
100; N per exp = 700
: power = 0.551
50"
0- - _2Log(L(0)/L(1))

10 -5 0 5 10 15




N experiments

250/
200,
150,
100

50

95% HO &/ = 5%

1 asimov

N per exp = 500
power — 0442

\,

- h — 15—2Log(L(0)/|-(1))




N experiments
250/ 95% HO ¢ = 5%
200}
150/
100 N per exp = 300
: power = 0.307
50"
0b— LI, - ~2Log(L(0)/L(1)




/
Hard to tell £(qlJ=0) from f(q1J=1)
N experiments | —>CLs
250, 95% HO . =5%
200; HJ asimov
150"
100; N per exp =100
3 power = 0.155
50}
AR ~2Log(L(0)/L(1
O —— 5 o 5 10 15-2tea(LOyL(1)




- Birnbaum (1977) N
C L_ S "A concept of statistical evidence is not plausible unless it finds

'strong evidence for H, as against H,'

with small probability (o) when H, is true,

and with much larger probability (1— ) when H, is true. "

j@ )j :9 }(O) ) :)i ,> Birnbaum (1962) suggested that o /1— 3

(significance | power)should be used as a measure of

the strength of a statistical test ,rather than o alone

\Q Folroth | P=5%—> p'=5%/0.155 = 32%

0( PfOB(VQ)Ho Ho) p'=CL




/CLs

If p<a reject null

1200 LB L [}
1000
00 —

600 —

400 I~

200 -

|
N =)
T

5

U1 ASEL
] Nt
.

-
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N Experi

500 :
400 |
300 |

200
100

ments

0.1 02 03 04

e 4 .
Distribution of p-v-alue under H1

p-value

™~




(e g :
Distribution of p-v-alue under HO
f(x) PDF
cumulative F(x) = J_); f(x"dx’
let y=F(x)
PDF of y

dP dP dx
dy = A dy:f(x)/(dF/dx)=f(x)/f(x):l

F(x) distributes uniform between 0 and 1
p =1- F(x) distributes uniform between 0 and 1

™~




" , ™
Distribution of p-v-alue under HO

f(x) PDF
cumulative F(x) = J: f(x"dx’

let y=F(x)
PDF of y
L& [0/ (dF )= ()] f(x)=]
dy dx dy

F(x) distributes uniform between 0 and 1

p =1- F(x) distributes uniform between 0 and 1

04 06 08 1.0




e Tofind out which of two
methods is better plot
the p-vralue s the power
for each analysis
method

o Given the p-value, the
one with the higher
power is better

i
i/

Whtch Statistical Method is Better

|

“hhn.

o p-Value~significance

‘..‘f % Eilam Gross Statistics in PP
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.0 7.0 =0

p-value 1- [3 power




p:

Z —

@

From p-v-alues to Gaussian

significance

It is @ custom to

express the
p-Vralue as the
significance
associated to it,
had the pdf were
Gaussians

pexcs ] 20 , y
/ ¢ Tidy=1 WiZ) e
£ v

T -

® (1-p)

A significance of Z =15

corresponds to p = .

2.87 %

Beware of 1 vs 2-sided definitions!

&'ﬂ; i m Eilam Gross Statistics in PP
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"4-Sided p-value

« When trying to reject an
hy.pothesis while
performing searches,
one usually considers
only one-sided tail
probabilities.

o Downward fluctuations e« Upward fluctuations

of the background will of the signal will not

not serv-e as an be considered as an
evidence against the evidence against the
background signal

T % Eilam Gross Statistics in PP
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"2-Sided p-value

« When performing a
measurement (tu)’ any
dev-iation abov-é or
below the expected null
s drawing our attention -

/

and might serv-e an 030025

ps0

lndlcatlon O'f' some two-tail critical region(s)

anomaly or new physics.

o Here we use g 2-sided p-
\Falue

R % Eilam Gross Statistics in PP
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"4-sided 2-sided

5%

To determine a 1 sided 95% CL,
we sometimes need to set the critical
region to 10% 2 sided

1.640

2-sided 5% is 1.95 0
2-sided 10% is 1.64 O

e < 0.05

10%

\ 4
ps0.025 ps0

two-tail critical region(s)

k BTl [2) Eilam Gross Statistics in PP
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e
p-Vralue - testing the null hypothesis

When testing the b hypotheis (null=b), it is custom to set

X =2910*%
> if py<d.9 10-*the b hypothesis is rejected
—>Discovery

When testing the s+b hypothesis (null=s+b), set o« =5%
if p.,,<5% the signal hypothesis is rejected at the 95%
Confidence Lev-el (CL)

- Exclusion

BN TTRY . P i
AR ['%3 Eilam Gross Statistics in PP /




Confidence Interval and
Confidence Level (CL)

‘:'"‘i ‘mll:?_’] Eilam Gross Statistics in PP




/CL & Cl measurement [1=1.1%£0.3

= CI of u=[0.8,1.4]ar 68% CL

o A confidence interv-al (Cl) is a particular kind of
interv-al estimate of a population parameter.

o Instead of estimating the parameter by a single \ralue,
an interv-al likely to include the parameter is giv-en.

o How likely. the interv-al is to contain the parameter is
determined by the confidence lev-el

o Increasing the desired confidence lev-el will widen the
confidence interv-al.

Bl IS Eilam Gross Statistics in PP
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~ . R
Confidence Interv-al & Coverage

«Say you have a measurement p_ of p with p,  , being
the unknown true v-alue of p

«Assume you know the probability distribution function
P(MyneqsH)

ebased on your statistical method you deduce
that there is a 95% Confidence interv-al [p,,H,].

(it is 95% likely that the W, is in the quoted interval)

The correct statement:
oln an ensemble of experiments 95% of the obtained
confidence interv-als will contain the true v-alue of p.

BTl [ Eilam Gross Statistics in PP
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4 .
Confidence Interv-al & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Value of M.

off your statement is accurate, you hav-e full
coverage

off the true CL is>95%, your interv-al has an ov-er
cov-erage

off the true CL is <95%, your interv-al has an
undercov-erage

]:,‘s % Eilam Gross Statistics in PP




/ [} (
Upper Limit
o Given the measurement you deduce somehow (based on your
statistical method) that there is a 95% Confidence interv-al
[o7uu,p]'

o This means: our interv-al contains u=0 (no Higgs)

e We therefore deduce that p<p,, at the 95% Confidence Lev-el (CL)
* W, is therefore an upper limit on p
o If uup<1 -

o(mH)<GSM(mH)9
o SM Higgs with a mass m is excluded at the 95% CL

TRl I~ Eilam Gross Statistics in PP
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/How to deduce o ClI RN

o One can show that if the data is
distributed normal around the

av-erage i.e. P(datalp )=normal ° 7 e oo
‘ 1 e Side Note:
fl@lpo)=——=c 2 A Clis an intervalin the
« then one can construct q¢ 68% ClI ;;:if“mmeters Phase-

around the estimator of p to be

N .
X0 lie.x,,

elx-0.,%+0,|@68%CL

o Howev-er, not all distributions eOne can guarantee a
are normal, many distributions coverage with the
are even unknown and
coverage might be a real issue (193%)

Neyman Construction

Negmo,n, J. (193%)

Philosophical Transactions of the Royal Society of London A, 236, 333-380.

/



https://www.jstor.org/stable/91337
https://www.jstor.org/stable/91337

The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction

E“E}';;‘ 147 rm H o J .
.:Bi;,f‘,;:r Eilam Gross Statistics in PP /
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4 :
Neyman Construction

Prob(s, |s,)is known

e
_________ St 5
SU
$rfidence Belt
S —
t1 Uf
=y
Sl """"""""""""""""

[s,s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s

« With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction Confidence Interval will
K \ME\ the correct rate.

/




Nuisance Parameters

or Systematics

rf'f.“;.;“‘vv.:,' rm H 4 . .
BIal ery  Eilam Gross Statistics in PP
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4 N
Nuisance Parameters (Systematics)
o« There are two kinds of parameters:
e Parameters of interest (signal strength... cross section... )
e Nuisance parameters (background (b), signal efficiency,
resolution, energy. scale,...)

o The nuisance parameters carry systematic uncertainties

« There are two related issues:
o Classifying and estimating the systematic uncertainties
o Implementing them in the analysis

o The physicist must make the difference between cross checks
and identifying the sources of the systematic uncertainty.
o Shifting cuts around and measure the effect on the observ-able...

Very often the observ-ed Vrariation is dominated by the statistical
uncertainty in the measurement.

BTl 5 Eilam Gross Statistics in PP
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e

Implementation of Nuisance Parameters

o Implement by marginalizing (Bay.esian) or profiling
(Frequentist)

o Hybrid: One can also use a frequentist test
statistics (PL) while treating the NPs vria
marginalization (Hybrid, Cousins & Highland way.)

o Marginalization (Integrating))
o Integrate the Likelihood, L, ov-er possible \ralues of
nuisance parameters (weighted by their prior belief
functions -- Gaussian,gamma, others...)

L(w)= | L(u.0)m(6)d6

BTl 5 Eilam Gross Statistics in PP
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The Hybrid Cousins-Highland Marginalization

Cousins & Highland
_ Ls+b(©®) _ JL(s+0(©)7(0)d0
L(b(6)) [ L(b®))m(6)de
Profiling the NPs A
_ L(s+b(9) _ L(s+ b(6,)
LOO)  L®@é,)

és is the MLE of 0 fixing s

T E%—’% Eilam Gross Statistics in PP
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4 N
Nuisance Parameters and Subsidiary Measurements

o Usually the nuisance parameters are auxiliary
parameters and their values are constrained by
auxiliary measurements

o Example
n~us(m,)+b (n)=us+b

m=1b

L(,u -85+ b(@)) = Poisson(n;/,t -85+ b(@)) : Poisson(m;l‘b(@))




4 . . ™
Mass shape as a discriminator

n~uws(m,)+b m~1tb

L (u -5+ b )) = H Poisson (nl.; w-s; +b.(0 ))°P0iSSOn (ml.;rbi(e))
i=1

contrel ragon sgrealragien
R T A T T T T T e T T 100 1 P R R

| . 1.

- =05 . —h Q0
a0
| 70

60

¢
s 50
-

40
30
20+
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"Pulls and Ranking of NPs

0 -0
The pull of 0, is given by ——.
00
0, -6 0.-0,
without constraint 0/ 0”\ = A S g
k Oy ) O,

It’s a good habit to ook at the pulls of the NPs and make sure that
Nothing irregular is seen

In particular one would like to guarantee that the fits do not ov-er constrain
a NP in a non sensible way

T L3 Eilam Gross Statistics in PP
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‘A toy case with 1 poi
n= UeAs+b

L=L(u,,A,b)

. L(,é,A,b
lpoi:t, = ('lf — A)
L(u,e,A,b)
L(u,e.A)= Poiss(n|l ueA+b)G(A,,  1A,0,)G(e, le,o )G, 1b,0,
_ (HeAs+D)" _eastr) 1 ew—e?/20r L 02202 L (A —A)2 /20
L(p, e, A) = i e W 06\/%6 mee UA\/%e
k@l g%g Eilam Gross Statistics in PP /




" Profile Likelihood for Measurement

P L(u,e,A,D)
4t — AA
U .
3 L(uaeaAab)
1\ /
05 10 15  20H
— Profiled

Fixed A - Ameas, b = bmeas ’ €= Emeas




/Proﬁle Likelihood 7n=mueAs+b

background = 100

signal = 90
€=05
A=0.7
O =0.05
9, =10
A =02
nmgas - 137
brneas - 105.533

Emees = 0.531025
Areas = 0.870554
Hmeas = 0.756304

......

—_ ——— — -

L= L(,LL,eAb)
_ L éAIS)
“L(LEAD)

6. =0

€. =¢€
p . - — —
a0 15 20H

AlA, bib,
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Random Data Set

Nmaas 132
bm - 103-208
Emess = 0.465459
A eas = 0.487107
To get the pulls:
—scan q(e€)
—Find é
—Find 6" and o i.e. the poitive and negative error bar substituting q(e)=1
q(e a[A) a(b)
L v" G ,; \\ L3 ’/'
% S § 5 5 / \ s /
v\.". 4: ‘#.', .\ at /f \\ 4 /.
"“‘ 3 . )j" \ 7 ; 7 \.\ 3 "I
N = 7 \ o3t Ny o»
\‘r—'ﬁ--—j/ '\"«.""’."‘P‘---, ; \;‘,_-.——~ 4
o .\.‘x---«-’. Lo L T NP Ny | LD
-3 -2 -1 1 2 o = -2 -1 ° -2 -2 1 3 o
— Pof ad — Profilad Irediled

— Fixed A =Agppua. b= Bpopa , 0= tivea

— Thed € €nmsi D Dres, VUV  LU-ess

Fixed £ = Eeyn, AS A K M

With the random data sets we find perfect pulls for the profiled scans
But not for the fix scans!




/ Random Data Set: Find the Impact of NP

Neas = 132 3.0
bmeas = 103.208 2.5
Ems = 0.465459 Al
2.0 y f
Apeas = 0.487107 | Heor ;
Umeas = 1.41099 215 7(\0 I
1.0 ‘
To get the impact of a Nuisance Parameter
in order to rank them: 0.5
Say we want the impact of €
—Scan q(€), profiling all other NPs ::
—Find € o 20
—(note that i, = i) T 15
~Find i1, . = ﬁgwi 1.0
E 6 .2 | 05
—The impactis givenby A= . -1 €
o &35 0.40 045 0.50 0.55 0.60 0.65
€
N
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bmeas = 100
€meas = 0.5
Ameas =0.7
Mmeas = 1

nmeas=HS£A+b=1 31.5

Back to Asimov: Find the Impact of a NP

To get the impact of a Nuisance Parameter

in order to rank them:

Say we want the impact of €

—Find é
—(note that f1, = 1)
-Find {1, [Lewi

—The impact is given by Au™ ,LL

—Scan q(¢€), profiling all other NPs

e+0‘

N

— [

— '
215 \ '
o \

30 \ j
25 \ /
2.0 \\ /I

1.0 \\ /
{
05 \ /
\ /

°Pas 0.40 0.45 050 0.55 0.60 0.65
€
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Asimov: SUMMARY of Pulls and Impact

bmeas = 100
€meas = 0.5
Ameas =0.7
Mmeas = 1

nmeas=HS£A+b=1 31.5

-2 -1 2 | 2Al
| | €
| |
.
| |
| % b
& -y
=2 -1 0 1 2
aao
regalve coTe atior
positive =terelalion
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Random Data Set: SUMMARY of Pulls and Impact

Nmaas = 132
bmeas = 103.208
Emess = 0.465459

Ameas = 0.4871 07

Hmeas =

1.41099

-2 -1 - 2Ap
@ 4
® 3
A
a-ap
-2 -1 0 2
aao

regalve coTe atior

positive Serelalion




‘Pulls and Ranking of

Ranking 0. by its effect
in the NP

By ranking we can tell
which NPs are the important
ones and which can be pruned

Eilam Gross Statistics in PP
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If time permits:
The Feldman Cousins Unified Method
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The Flip Flop Way of an Experiment

o The most intuitiv-e way to analyze the results of an
experiment would be

if the significance based on qqs, is less than 3
sigma, deriv-e an upper limit (just looking at tables), if
the result is >5 sigma deriv-e a discovery central
confidence interval for the measured parameter
(cross section, mass....)

o This Flip Flopping policy leads to undercoverage:
Is that really a problem for Physicists?
Some physicists say., for each experiment quote
always two results, an upper limit, and a (central?)
discovery confidence interv-al

o Many LHC analyses report both ways.

;;x;:; g_n_g—;% Eilam Gross Statistics in PP
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Frequentist Paradise - F&C Unified with Full Cov-erage

o Frequentist Paradise is certainly made up of an interpretation by
constructing a confidence interv-al in brute force ensuring a cov-erage!

e Thisis the Neyman confidence interv-al adopted by F&C....

o The motiv-ation:
e Ensures Coverage
e Av-oid Flip-Flopping - an ordering rule determines the nature of the

interv-al
(1-sided or 2-sided depending on your observ-ed data)
e Ensures Physical Interv-als r Llerh
LGRS
o Let the test statistics be g= L(s+b)
_ZIHLS(Z)IQ) §<0
where S is the \

physically allowed mean s that maximizes L(5+b)
(protect a downward fluctuation of the background,n_, >b ; §>0 )

o Order by taking the 68% highest q’s
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How to tell an Upper limit from a Measurement without Flip Flopping

.A 6 YT TTTTTT T T

measureme .
nt (L sided)

NN

Mean

(]

-1 0 1 2 3 4
Measured Mean x

'
[} T

Rl L Eilam Gross Statistics in PP
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How to tell an Upper limit fram n Mencurement without Flip Flopping

o An upper o “LALY EAEEIERL | LRI R
limit (1

N

sided)
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