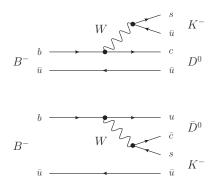
Belle results for $\phi_3~(=\gamma)$ and prospects for Belle II by 2021

Daniel Červenkov December 1, 2016 | CKM


CHARLES UNIVERSITY

Methods for measuring ϕ_3

- Best theoretically clean way of measuring ϕ_3 is based on interference between $b \rightarrow \bar{u}cs$ and $b \rightarrow u\bar{c}s$ tree level amplitudes
- E.g., $B^{\pm} \to D^{(*)}K^{\pm}$ followed by $D \to f$ and $B^{\pm} \to \overline{D}^{(*)}K^{\pm}$ followed by $\overline{D} \to f$, where f is a **common final state**

- No penguin contribution ⇒ theoretically clean
- The only CP-violating parameter that can be measured solely in tree-level processes
- φ₃ precision is limited by small branching ratios

GLW Method [8, 9]

- *D* meson is reconstructed from **CP-even** (D_{CP^+}) or **CP-odd** (D_{CP^-}) final states
- *B* can decay weakly to either D^0 or \overline{D}^0 , but when reconstructing a CP eigenstate, actually selecting superposition $(D^0 \pm \overline{D}^0)/\sqrt{2}$

$$R_{CP\pm} = 2 \frac{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{fav}K^-) + \Gamma(B^+ \to D_{fav}K^+)} = 1 + r_B^2 \pm 2r_B \cos(\delta_B) \cos(\phi_3)$$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \pm r_B \sin(\delta_B) \sin(\phi_3) / R_{CP\pm}$$

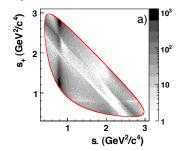
ADS Method [2]

- Doubly Cabibbo suppressed (DCS) D decays can also be used to measure ϕ_3
- E.g., $[K^+\pi^-]_D K^-$ can be reached in two ways:
 - Cabibbo favored (CF) $B^-
 ightarrow D^0 K^-$ followed by DCS $D^0
 ightarrow K^+ \pi^-$
 - DCS $B^- \to \bar{D}^0 K^-$ followed by CF $D^0 \to K^- \pi^+$

$$R_{ADS} = \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^-\pi^+]_D K^-) + \Gamma(B^+ \to [K^+\pi^-]_D K^+)}$$

= $r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos(\phi_3)$

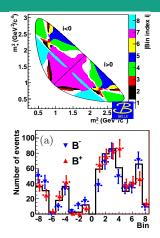
- Additional vars r_D and δ_D
- Can be obtained from charm factories


$$A_{ADS} = \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) - \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^+\pi^-]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)}$$

= $2r_B r_D \sin(\delta_B + \delta_D) \sin(\phi_3) / R_{ADS}$

GGSZ Method (Dalitz) [7, 4]

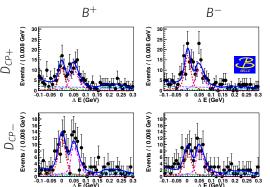
- For self-conjugate multi-body D final states, e.g., $K_S^0 \pi^+ \pi^-$
- The amplitude for $B^+ \to DK^+$, with $s_{\pm} = m_{K^0_c \pi^{\pm}}^2$:


$$A_{B^+}(s_+, s_-) = \overline{A}_D + r_B e^{i(\delta_B + \phi_3)} A_D$$
$$A_{B^-}(s_+, s_-) = A_D + r_B e^{i(\delta_B + \phi_3)} \overline{A}_D$$

A_D(s₊, s₋) is the amplitude of the D decay

$B^- ightarrow D^0 K^-$, $D^0 ightarrow K^0_{ m S} \pi^+ \pi^-$ (GGSZ)

- Dominating measurement of ϕ_3 at B-factories
- First model-independent Dalitz analysis $\phi_3 = (77^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}$ [1]
- In recent model-dependent analyses, model uncertainty $3^{\circ} 9^{\circ}$
- Latest model-dependent result (incl. D^*K) $\phi_3 = (78.4^{+10.8}_{-11.6} \pm 3.6 \pm 8.9)^\circ$ [14]
- For future experiments, model uncertainty is expected to dominate (more statistics and BES-III results will supersede CLEO-c)



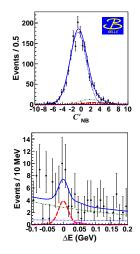
Model independent

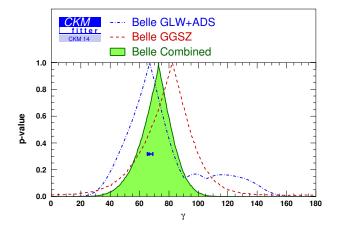
- Model uncertainty replaced by statistical uncertainty from CLEO-c
- But ~80% of statistical precision

$B^- ightarrow D^{*0} K^-$, ${}^{D^{*0}} ightarrow D^0 \pi^0$, $D^0 \gamma$ (GLW and ADS)

- Full data set: 772M B pairs
- B-factory exclusive measurement (low E π^0/γ ; CP-) GLW
- Combining results for $D^* \rightarrow D\pi^0, D\gamma$ yields: $A_{CP+} = -0.14 \pm 0.10 \pm 0.01$ $A_{CP-} = +0.22 \pm 0.11 \pm 0.01$

ADS


$$R_{D^*K,D\pi^0} = [1.0^{+0.8}_{-0.7}(\text{stat})^{+0.1}_{-0.2}(\text{syst})] \times 10^{-2}$$
$$R_{D^*K,D\gamma} = [3.6^{+1.4}_{-1.2}(\text{stat}) \pm 0.2(\text{syst})] \times 10^{-2}$$

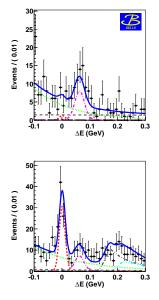

To be published soon

- Full data set: 772M B pairs
- Caveat: strong phase from the *D* decay δ_D can vary over **multi-particle** phase space, which can dilute CP-violation effects
- However, this effect is quite small here (coherence factor close to 1 [10])

$$R_{DK} = (1.98 \pm 0.62 \pm 0.24) \times 10^{-2}$$

A_{0K} = 0.41 ± 0.30 ± 0.05

• First evidence for suppressed $B \rightarrow DK$ decay; significance 3.2σ [11]


 $\phi_3 = (73^{+13}_{-15})^\circ$

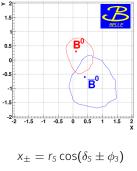
$$B^0
ightarrow D^0 K^{*0}$$
 , $\kappa^{*0}
ightarrow \kappa^+ \pi^-$, $D^0
ightarrow \kappa^- \pi^+$ (ADS)

- Full data set: 772M B pairs
- Self-tagging channel because of the K* decay
- ADS but with $D[K^+\pi^-]_{K^*} \rightarrow \text{slightly}$ different $R_{DK^{*0}}$ definition

$$R_{DK^{*0}} = (4.1^{+5.6+2.8}_{-5.0-1.8}) \times 10^{-2}$$

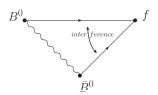
- As the R_{DK*0} value is not significant, an upper limit was established [12]
- *R_{DK*0}* < 0.16 (95% C.L.)

$$B^0 \rightarrow D^0 K^{*0}$$
, $\kappa^{*0} \rightarrow \kappa^+ \pi^-$, $D^0 \rightarrow \kappa^0_{
m S} \pi^+ \pi^-$ (GGSZ)


- 1st model-independent Dalitz analysis of $B^0 \rightarrow D^0 K^{*0}$ [13]
- Full data set: 772M B pairs
- Results given in Cartesian coordinates (Gaussian, easy to combine)

$$\begin{aligned} x_{-} &= +0.4^{+1.0+0.0}_{-0.6-0.1} \pm 0.0\\ y_{-} &= -0.6^{+0.8+0.1}_{-1.0-0.0} \pm 0.1\\ x_{+} &= +0.1^{+0.7+0.0}_{-0.4-0.1} \pm 0.1\\ y_{+} &= +0.3^{+0.5+0.0}_{-0.8-0.1} \pm 0.1 \end{aligned}$$

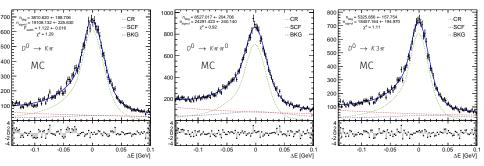
 $r_{\rm s} < 0.87$ 68% C.L.


Model independent

- Model uncertainty replaced by statistical uncertainty from CLEO-c
- But ~80% of statistical precision

$$y_{\pm} = r_{\rm S} \sin(\delta_{\rm S} \pm \phi_3)$$

- All of the measurements presented so far were time-independent
- Time-dependent measurements also possible
- Channels like:
 - $B^0 \rightarrow D^{(*)}\pi$ [3]
 - $B^0 \rightarrow D^{(*)}\rho$
- Mixing induced CPV
- In order to extract ϕ_3 from $B \to SS/SV$ decays we must supply $r = |A_{DCS}/A_{CF}|$ externally, usually assuming SU(3)symmetry
- In B → VV decays one can extract all physics parameters from data

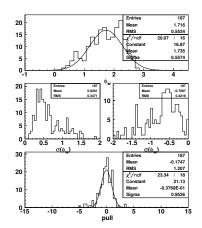

- $B \rightarrow VV$
- 3 helicity configurations; $A = \sum_{\lambda} A_{\lambda}$
- $\Gamma = |A|^2 \Rightarrow$ interference terms (more info about A_λ gets preserved)
- In principle we can extract $\rho_{\lambda} = r_{\lambda}e^{i(-2\phi_1 \phi_3 + \delta_{\lambda})}$ and $\bar{\rho}_{\lambda} = r_{\lambda}e^{i(+2\phi_1 + \phi_3 + \delta_{\lambda})}$
- However, when r_{λ} are small fitting can fail (r = 0 is a pole in sensitivity of other vars)
- We use Cartesian coordinates $\{r_{\lambda}, \delta_{\lambda}, \phi_{W}\} \rightarrow \{x_{\lambda}, y_{\lambda}, \bar{x}_{\lambda}, \bar{y}_{\lambda}\}$

•
$$\rho_{\lambda} = x_{\lambda} + iy_{\lambda}$$
 and $\bar{\rho}_{\lambda} = \bar{x}_{\lambda} + i\bar{y}_{\lambda}$

• This introduces 5 new vars; successive step has to be made to extract the physical parameters

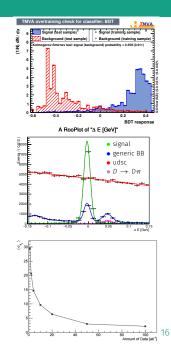
$D^* ho$ Yield

- 60k events in the Belle dataset
- $r = |A_{DCS}/A_{CF}|$ is expected to be $\sim 1 2\%$; small CPV effect
- Realistic yield fits


MC sampl	e generated	with:
----------	-------------	-------

- 60k events
- Helicity amplitudes from CLEO [6]
- $r_{\lambda} = 1\%$
- Random values for strong phases:
 - $\delta_{+} = -0.393$
 - $\delta_0 = 0.785$
 - $\delta_{-} = 1.571$
- $2\phi_1 + \phi_3 = 1.79371$

Var	Fit	σ
a	0.2861	0.0022
(a _∥)	0.5919	0.0130
$ a_0 $	0.9306	0.0008
(a⊥)	3.1159	0.0110
x_{\parallel}	0.0530	0.0222
x ₀	0.0640	0.0137
x_{\perp}	0.0700	0.0228
У _{II}	0.0109	0.0143
Уo	-0.0131	0.0046
y_{\perp}	-0.0369	0.0225
\overline{x}_{\parallel}	0.0669	0.0240
\overline{x}_0	0.0829	0.0114
\bar{x}_{\perp}	0.0530	0.0249
\overline{y}_{\parallel}	0.0123	0.0168
\overline{y}_0	0.0055	0.0046
\overline{y}_{\perp}	0.0297	0.0235

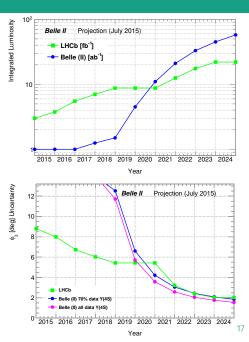

Realistic Toy Fit

- Based on simpler (generator level) more optimistic (higher yield) toy MC
- Robust $2\phi_1 + \phi_3$ extraction from x, y
- Adjusted for actual yield, resolution, flavor tagging:
 - $\sigma(2\phi_1 + \phi_3) \approx 80^\circ$ (stat) for Belle
 - $\sigma(2\phi_1 + \phi_3) \approx 11^{\circ}$ (stat) for Belle II at $50ab^{-1}$
- Without any external input
- We can decrease σ, if we take, e.g., r_λ from other measurements (D^{*}_sρ)

BELLE II SENSITIVITY SIMULATION

- Sensitivity simulation study $B \rightarrow [K_S h^+ h^-]_D K (GGSZ)$
- The study was **not finalized**, not fully tuned:
 - Continuum suppression
 - Particle ID
- Full Belle II simulation w/ reconstruction
- Statistical uncertainties (for the chosen channel)
 - $\sigma(\phi_3) = 9.5^\circ$ with 10 ab⁻¹
 - $\sigma(\phi_3) = 2.9^\circ$ with 50 ab⁻¹
- Overall precision improvement as expected
- Incomplete, conservative estimate

ϕ_3 Combination Projection


- Belle II based on $B \rightarrow D^{(*)} K^{(*)}$
- LHCb based on $B \to DK^+,$ $D\pi^+$ and DK^{*0}

Both with

- $D \rightarrow KK$, $D \rightarrow \pi\pi$, $D \rightarrow K\pi$
- $D \to K \pi \pi \pi$
- $D \rightarrow K_S \pi \pi$

Both experiments have/will include more modes Work ongoing to estimate sensitivity more precisely

LHCb values based on extrapolation from LHCb-PAPER- 2014-041

- New Physics (NP) in ϕ_3 searches: usually compare tree-level with penguins
- Recent studies show that NP contributions to tree-level C_1 and C_2 of $\mathcal{O}(40\%)$ and $\mathcal{O}(20\%)$ are not excluded
- Rough estimate shows that deviations in \$\phi_3\$ of \$\mathcal{O}\$(4°) are consistent with current experimental constraints [5]
- Motivation for theoretical and experimental study of ϕ_3

ΤΗΑΝΚ ΥΟυ!

[1] H. Aihara, K. Arinstein, D. M. Asner, et al.

First measurement of ϕ_3 with a model-independent dalitz plot analysis of $B^{\pm} \rightarrow dK^{\pm}$, $d \rightarrow K_S^0 \pi^+ \pi^-$ decay.

Phys. Rev. D, 85:112014, Jun 2012.

[2] D. Atwood, I. Dunietz, and A. Soni.

Improved methods for observing CP violation in $B^{\pm} \to \mathrm{KD}$ and measuring the ckm phase γ .

Phys. Rev. D, 63:036005, Jan 2001.

[3] S. Bahinipati, K. Trabelsi, K. Kinoshita, et al.

Measurements of time-dependent cp asymmetries in $b\to d*\mp\pi^\pm$ decays using a partial reconstruction technique.

Phys. Rev. D, 84:021101, Jul 2011.

[4] A. Bondar.

Belle dalitz analysis meeting.

unpublished, Belle Dalitz analysis meeting, (2002).

[5] J. Brod et al.

New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ .

Phys. Rev. D, 92:033002, Aug 2015.

[6] S. E. Csorna et al.

Measurements of the branching fractions and helicity amplitudes in $B \to D^* \rho$ decays.

Phys. Rev., D67:112002, 2003.

[7] A. Giri, Y. Grossman, A. Soffer, and J. Zupan.

Determining γ using $B^{\pm} \to dk^{\pm}$ with multibody D decays. Phys. Rev. D, 68:054018, Sep 2003.

[8] M. Gronau and D. London.

How to determine all the angles of the unitarity triangle from B(d)0 -> D K(s) and B(s)0 -> D0.

Phys. Lett., B253:483–488, 1991.

[9] M. Gronau and D. Wyler.

On determining a weak phase from CP asymmetries in charged B decays. *Phys. Lett.*, B265:172–176, 1991.

[10] J. Libby, S. Malde, A. Powell, et al.

New determination of the and coherence factors and average strong-phase differences.

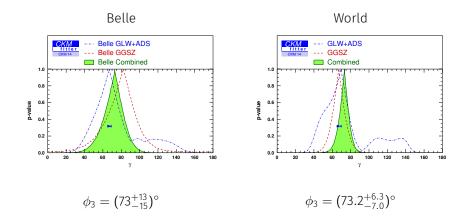
Physics Letters B, 731:197 – 203, 2014.

[11] M. Nayak, J. Libby, K. Trabelsi, et al.

Evidence for the suppressed decay $B^- \to dK^-$, $d \to K^+\pi^-\pi^0$. Phys. Rev. D, 88:091104, Nov 2013.

- [12] K. Negishi, Y. Horii, Y. Onuki, et al. Search for the decay $B^0 \rightarrow dK^{*0}$ followed by $d \rightarrow K^-\pi^+$.
- [13] K. Negishi, K. Negishi, A. Ishikawa, et al.

First model-independent dalitz analysis of $b0 \rightarrow dk_{P}^{2}0$, $d \rightarrow ks0\pi+\pi-$ decay. Progress of Theoretical and Experimental Physics, 2016(4), 2016.


[14] A. Poluektov, A. Bondar, B. D. Yabsley, et al.

Evidence for direct *cp* violation in the decay $B^{\pm} \rightarrow D^{(*)}K^{\pm}$, $d \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ and measurement of the ckm phase ϕ_{3} .

Phys. Rev. D, 81:112002, Jun 2010.

COMBINATION FOR CHARGED B

The world combination doesn't include LHCb's recent measurements. LHCb alone now reached $\gamma = (72.2^{+6.8}_{-7.3})^{\circ}$