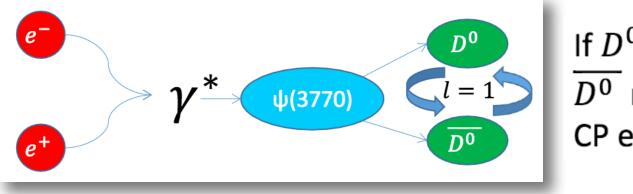


Status and prospects of *D* mixing and CPV at BESIII Xiao-Rui Lyu University of Chinese Academy of Sciences (On behalf of the BESIII collaboration)

CKM2016

9th International Workshop on the CKM Unitarity Triangle TIFR, Mumbai Nov. 28 – Dec. 2, 2016



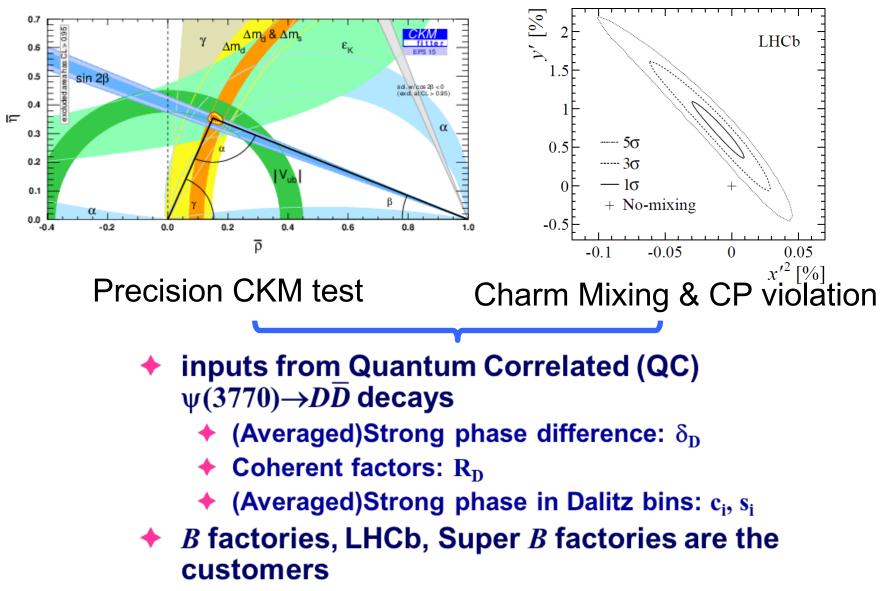
- Introduction and BESIII
- Recent results on D mixing and CPV
- Future plan & physics prospects
- Summary

EFSI Quantum correlated (QC) neutral *D* state near threshold

If D^0 in CP eigenstate, $\overline{D^0}$ must be in opposite CP eigenstate

Quantum Correlations (QC) and CP-tagging are unique

Taking advantage the quantum coherence of D<u>D</u> pairs, BESIII can study the charm physics in an unique way


- strong phase in D decays
- D mixing parameters
- direct CP violation

 $e^{+} \qquad e^{-} \qquad e^{-$

QC inputs for Charm Physics

4

δ and γ/ϕ_3 input

R COPEN OF ST

- *D* hadronic parameters for a final state $f: \frac{A(\overline{D}^0 \to f)}{A(D^0 \to f)} \equiv -r_D e^{-i\delta_D}$
- Charm mixing parameters: $x = \frac{\Delta M}{\Gamma}, y = \frac{\Delta \Gamma}{2\Gamma}$ - Time-dependent WS $D^0 \to K^+ \pi^- \text{rate} \Rightarrow$

$$\mathbf{y}' = \mathbf{y} \cos \delta_{K\pi} - \mathbf{x} \sin \delta_{K\pi}$$
 (LHCb)

- $\delta_{K\pi}$: QC measurements from Charm factory
- γ/ϕ_3 measurements from $B \rightarrow D^0 K$

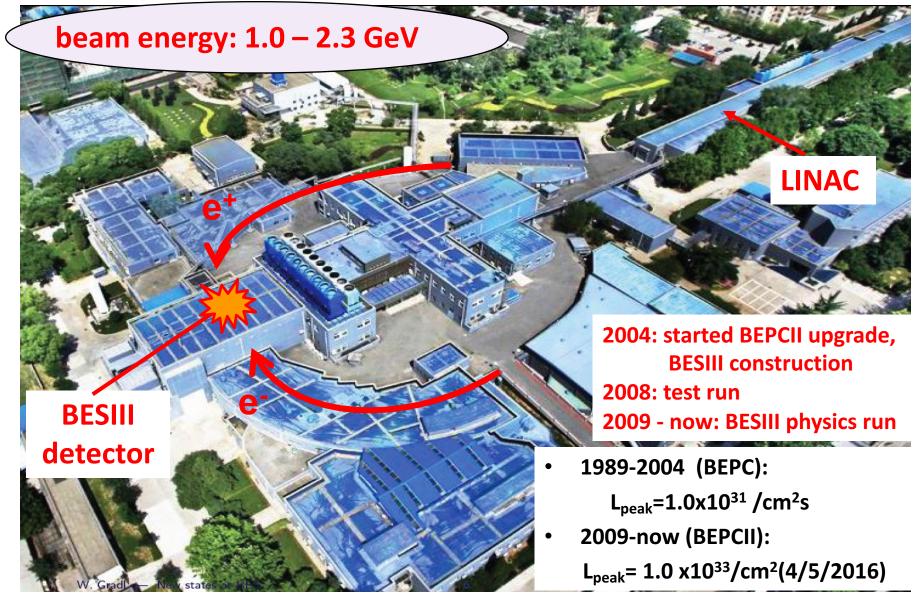
$$-b \rightarrow u : \gamma/\phi_3 = argV^*_{ub}$$

- most sensitive method to constrain γ/ϕ_3 at present
- GLW, ADS method
 - r_D , δ_D : QC measurements from Charm factory
- GGSZ method
 - c_i , s_i : QC measurements from Charm factory

Time-integrated decay rates

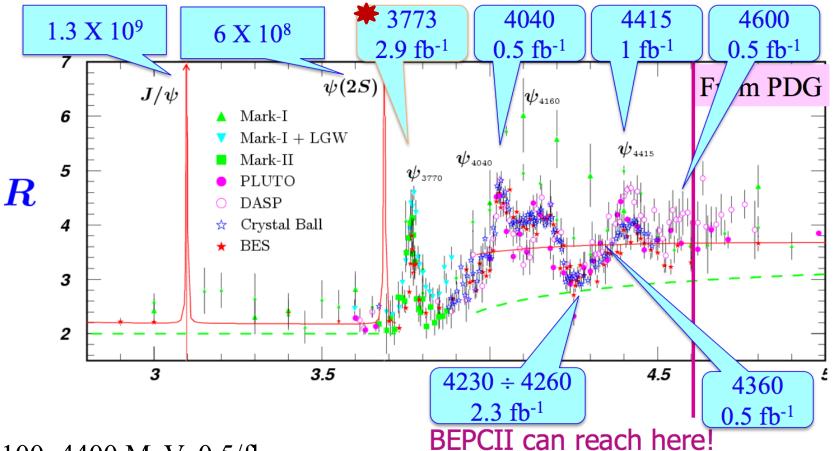
- No time dependent information at Charm threshold
- Anti-symmetric wavefuction: $\Gamma^{2}_{ij} = |\langle i | D^{0} \rangle \langle j | \overline{D}^{0} \rangle - \langle j | D^{0} \rangle \langle i | \overline{D}^{0} \rangle|^{2}$
- Double tag rates:
 - $A_i^2 A_j^2 \left[1 + r_i^2 r_j^2 2r_i r_j \cos\left(\delta_i + \delta_j\right) \right]$
 - CP tag: r=1, $\delta=0$ or π ; l^{\pm} tag: r=0
- Single and Double tag rates

$ z_f \equiv 2\cos\delta_f, r_f \equiv \frac{A_{DCS}}{A_{CF}}, R_M \approx \frac{x^2 + y^2}{2} $							
C-odd	f	$ar{f}$	l+	ŀ	CP+	CP-	
f	$R_M [1 + r_f^2 (2 - z_f^2) + r_f^4]$						
\bar{f}	$1 + r_f^2 (2 - z_f^2) + r_f^4$	$R_M \left[1 + r_f^2 \left(2 - z_f^2 \right) + r_f^4 \right]$					
l^+	r_f^2	1	R_M				
l-	1	r_f^2	1	R_M			
CP+	$1 + r_f (r_f + z_f)$	$1 + r_f (r_f + z_f)$	1	1	0		
CP-	$1 + r_f (r_f - z_f)$	$1 + r_f (r_f - z_f)$	1	1	4	0	
Single Tag	$1 + r_f^2 - r_f z_f (A - y)$			1	2[1±(A	- y)]	



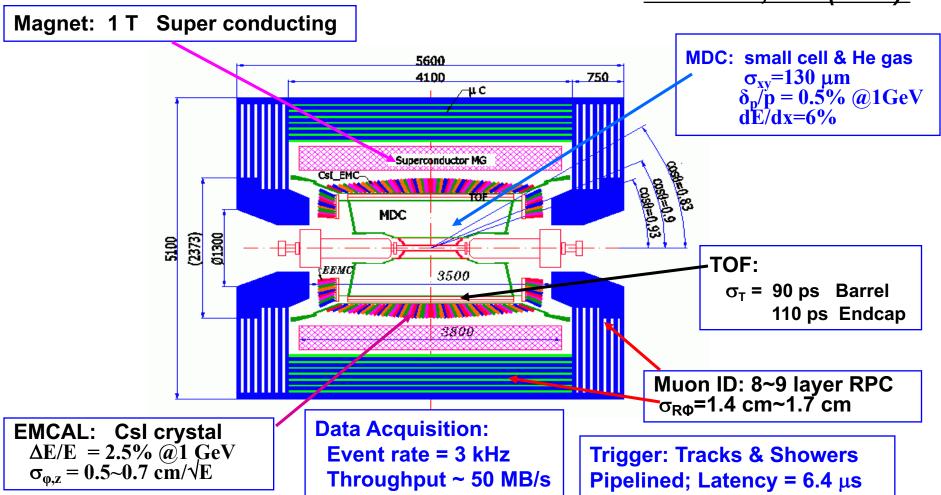
 $\psi(3770) \rightarrow [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$ $= -[D_{CP+}D_{CP-} - D_{CP-}D_{CP+}]/\sqrt{2}$ $D_{CP+} = [D^0 \pm \bar{D}^0] / \sqrt{2}$

EXAMPLE SITE SET UP: SET UP:



CKM 2016, Mumbai

BESIII data samples


- 4100~4400 MeV: 0.5/fb coarse scan
- 3850~4590 MeV: 0.5/fb fine scan
- In 2015, we finished energy scan at 2000~3000 MeV
- In 2016, we took 3/fb Ds data about 4180 MeV for Ds physics (about 5 times of CLEO-c data) CKM 2016, Mumbai

The BESIII Detector

<u>NIM A614, 345 (2010)</u>

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

BESIII Collaboration

Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ. Jinan Univ.

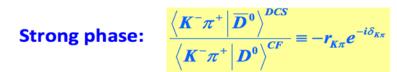
CKM 2016, Mumbai

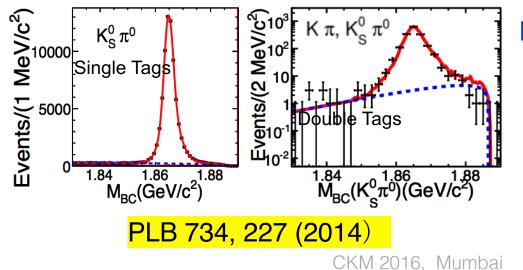
10

Charm facilities

- Hadron colliders (huge cross-section, energy boost)
 - Tevetron (CDF, D0)
 - LHC (LHCb, CMS, ATLAS)
- e⁺e⁻ Colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - B-factories (Belle(-II), BaBar)
 - Threshold production (CLEOc, BESIII)
 - Can not compete in statistics with Hadron colliders & B-factories!!!
 - Quantum Correlations (QC) and CP-tagging are unique
 - Only D meson pairs, no extra CM Energy for pions
 - Systematic uncertainties cancellations while applying double tag technique

€€SШ


Strong Phase δ_{Kπ}

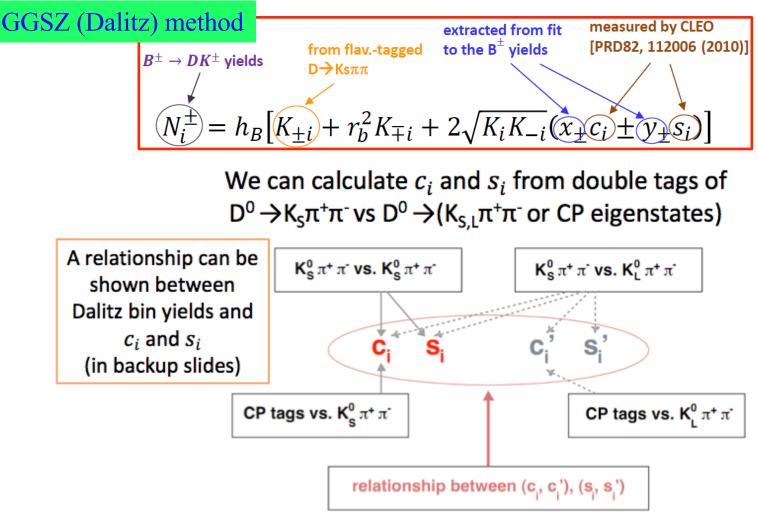

2.93 fb⁻¹ @3.773GeV

Quantum correlation \rightarrow Interference \rightarrow access strong phase!

 $\langle K\pi | D_{CP\pm} \rangle = (\langle K\pi | D^0 \rangle \pm \langle K\pi | \overline{D^0} \rangle) / \sqrt{2} \Rightarrow \sqrt{2} A_{CP\pm} = A_{K\pi} \pm \overline{A_{K\pi}}$ $\sqrt{2}A_{CP+} \pi - \delta_{K\pi} + \overline{A_{K\pi}} \Rightarrow 2r_{K\pi} \cdot \cos \delta_{K\pi} \approx A_{CP \to K\pi} \equiv \frac{|A_{CP-}|^2 - |A_{CP+}|^2}{|A_{CP-}|^2 + |A_{CP+}|^2}$ $= \frac{Br(D_{CP-} \to K\pi) - Br(D_{CP+} \to K\pi)}{Br(D_{CP-} \to K\pi) + Br(D_{CP+} \to K\pi)}$

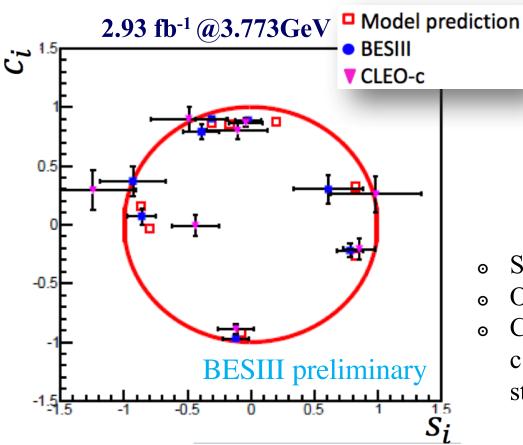
Flavor tags: K⁻π⁺, K⁺π⁻
CP+ tags (5 modes): K⁻K⁺, π⁺π⁻, K⁰_Sπ⁰π⁰, π⁰π⁰, ρ⁰π⁰
CP- tags (3 modes): K⁰_Sπ⁰, K⁰_Sη, K⁰_Sω

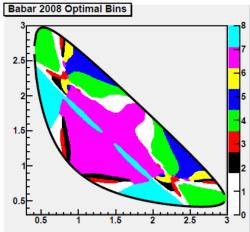
BESIII results:


 $\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$

- The third error is due to the input parameters
- World best precision
- In 10 /fb BESIII data, precision of cosδκπ will reach ~0.07

12



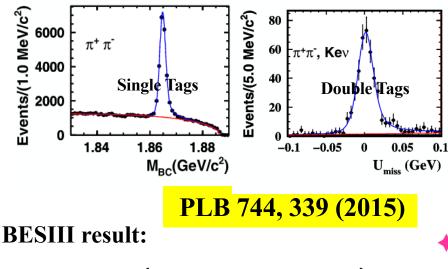


Only c_i, s_i from $K_s \pi^+ \pi^-$ is used to calculate γ . However adding in $D^0 \rightarrow K_L \pi^+ \pi^-$ we can calculate c'_i, s'_i and use how they relate to c_i, s_i to further constrain our results in a Global fit.

Preliminary Data Results

- Still statistical limited.
- Only statistical errors for BESIII
- Consistent agreement with CLEOc measurements, but superior in statistical errors
- Based on the BESIII results, we expect a reduction in the (c_i, s_i) contribution to the uncertainty in γ/ϕ_3 of ~40%.
- Crucial inputs for the future analysis carried out in the LHCb and BelleII experiment.

y_{CP} measurement



We measure the y_{CP} using CP-tagged semileptonic D decays, which allows to access CP asymmetry in mixing and decays.

Reconstructed modes:


- + Flavor tags: Kev_e , $K\mu v_\mu$
- CP+ tags (3 modes): K^-K^+ , $\pi^+\pi^-$, $K^0_S\pi^0\pi^0$,

+ CP- tags (3 modes): $K_{S}^{0}\pi^{0}$, $K_{S}^{0}\eta$, $K_{S}^{0}\omega$

$$\mathbf{y}_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$$

2.93 fb⁻¹ @3.773GeV

- Most precise measurement with QC charm mesons
- In the limit of no CP violation: y_{CP} = y

$$\mathcal{R}(D \to K^0_{S,L} \pi^0(\pi^0)) = \frac{\mathcal{B}(D \to K^0_S \pi^0(\pi^0)) - \mathcal{B}(D \to K^0_L \pi^0(\pi^0))}{\mathcal{B}(D \to K^0_S \pi^0(\pi^0)) + \mathcal{B}(D \to K^0_L \pi^0(\pi^0))}$$

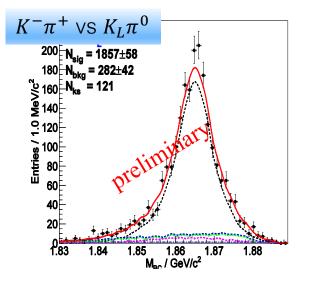
• interference of the CF component $D \rightarrow K^0\pi's$ with the DCS $D \rightarrow \underline{K}^0\pi's$ component. $|K_{0}^0 > \approx 1/\sqrt{2}$ ($|K_{0}^0 > - |\underline{K}_{0}^0 >$) and $|K_{0}^0 > \approx 1/\sqrt{2}$ ($|K_{0}^0 > + |\underline{K}_{0}^0 >$). The sign of this interference of K^0 with \underline{K}_{0}^0 is opposite for K_{L}^0 and K_{0}^0 ,

Single tag:
 ✓ CP+: KK, лл;
 ✓ CP-: K_Sπ⁰;
 ✓ Cabibbo Favored (CF): Кл, Кллл, Клл⁰;
 Double tag:
 ✓ CP+ (КК, лл, K_Lπ⁰, K_Sπ⁰π⁰) VS CF (Кл, Кллл, Клл⁰);
 ✓ CP- (K_Sπ⁰, K₁π⁰π⁰) VS CF (Кл, Кллл, Клл⁰);

$$\begin{split} N_{\mathrm{ST}(CF)} =& (1+r^2) \cdot 2N_{D^0\bar{D}^0} \cdot \mathcal{B}_{CF} \cdot \epsilon_{\mathrm{ST}(CF)} \\ N_{\mathrm{ST}(CP\pm)} =& 2N_{D^0\bar{D}^0} \cdot \mathcal{B}_{CP\pm} \cdot \epsilon_{\mathrm{ST}(CP\pm)} \\ N_{\mathrm{DT}(CF,CP\pm)} =& (1+r^2\mp 2r\cos\delta) \cdot 2N_{D^0\bar{D}^0} \\ & \cdot \mathcal{B}_{CF} \cdot \mathcal{B}_{CP\pm} \cdot \epsilon_{\mathrm{DT}(CF,CP\pm)}, \end{split} \\ \begin{aligned} \mathcal{L}_f =& \frac{\frac{N_{CP-,CF}/\epsilon_{CP-,CF}}{N_{CP-}/\epsilon_{CP-}} - \frac{N_{CP+,CF}/\epsilon_{CP+,CF}}{N_{CP+}/\epsilon_{CP+}} \\ \frac{N_{CP-,CF}/\epsilon_{CP-}}{N_{CP-}/\epsilon_{CP-}} + \frac{N_{CP+,CF}/\epsilon_{CP+,CF}}{N_{CP+}/\epsilon_{CP+}} \\ \end{aligned}$$

We can have
$$\mathcal{B}_{\mathrm{sig}(CP\pm)} = \frac{1}{1\mp C_f} \frac{N_{CF,CP\pm}/\epsilon}{N_{CF}}, \quad (C_f \equiv \frac{2r\cos\delta}{1+r^2})$$

K_L reconstruction and DT yields



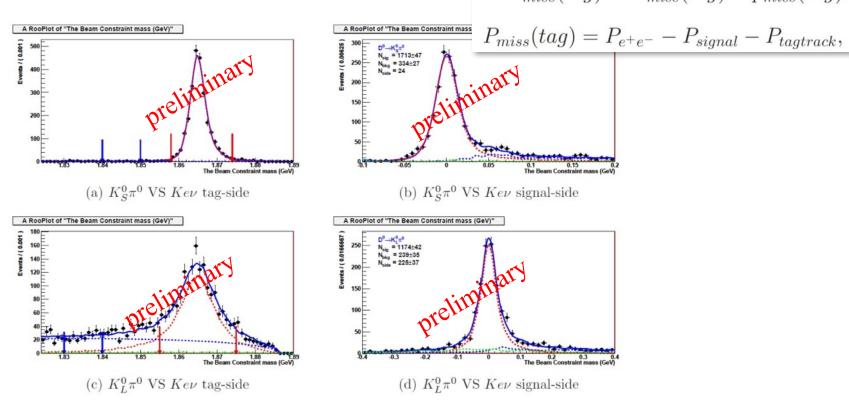
- *K_L* interact with EMC and deposit part of energy, thus giving position information.
- After reconstructing all other particles, K_L can be inferred from its position information and the constraint $\Delta E = 0$.

Statistical only

	Statistical Univ				
$\begin{array}{c c} D \to K^0_{S,L} \pi^0 \\ \hline \\ \mu i Br_{K_S \pi^0}(\%) & Br_{K_L \pi^0}(\%) & R(D \to K_{S,L} \pi^0) \\ \hline \\ K^{\rm str} 1.208 \pm 0.041 & 1.061 \pm 0.038 & 0.0646 \pm 0.0245 \\ \hline \end{array}$					
1.10	$1Br_{K_S\pi^0}(\%)$	$Br_{K_L\pi^0}(\%)$	$R(D \to K_{S,L}\pi^0)$		
Stell.	$1.208 {\pm} 0.041$	$1.061 {\pm} 0.038$	$0.0646 {\pm} 0.0245$		
$K3\pi$	1.212 ± 0.037	$0.985 {\pm} 0.036$	$0.1035 {\pm} 0.0237$		
$K\pi\pi^0$	$1.251 {\pm} 0.028$	$0.953 {\pm} 0.029$	$0.1351{\pm}0.0186$		
All	1.230 ± 0.020	$0.991{\pm}0.019$	$0.1077 {\pm} 0.0125$		
$D \to K^0_{S,L} \pi^0 \pi^0$					
		$D \to K^0_{S,L} \pi^0 \pi^0$			
	$\frac{D}{M^{K_S2\pi^0}(\%)}$	$D \to K^0_{S,L} \pi^0 \pi^0$ $Br_{K_L 2\pi^0}(\%)$	$R(D \to K_{S,L} 2\pi^0)$		
Kann	$\frac{D}{1.024\pm0.049}$	2,5	$R(D \to K_{S,L} 2\pi^0)$ -0.1183±0.0385		
Kinn Pl3n	$\begin{array}{c} & D \\ \hline M_{K_S2\pi^0}(\%) \\ \hline 1.024 \pm 0.049 \\ \hline 0.887 \pm 0.043 \end{array}$	$Br_{K_L 2\pi^0}(\%)$			
$\frac{Kinn}{\mathbf{P}^{1}3\pi}$ $\frac{K\pi\pi^{0}}{K\pi\pi^{0}}$	$\begin{array}{c} & D \\ \hline & & \\ 1.024 \pm 0.049 \\ \hline & & \\ 0.887 \pm 0.043 \\ \hline & & \\ 1.010 \pm 0.036 \end{array}$	$ \begin{array}{c} g_{3,2} \\ Br_{K_L 2\pi^0}(\%) \\ 1.299 \pm 0.080 \end{array} $	-0.1183 ± 0.0385		
$\frac{K_{\rm MM}}{{\rm P} 3\pi}$ $\frac{K\pi\pi^0}{{\rm All}}$	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$ Br_{K_L 2\pi^0}(\%) 1.299 \pm 0.080 1.097 \pm 0.073 $	$\begin{array}{r} -0.1183 \pm 0.0385 \\ -0.1060 \pm 0.0409 \end{array}$		

first measurement

CLEO: $R(K_{S,L}\pi^0) = (10.8 \pm 2.5 \pm 2.4)\%$


- Consistent with PDG values
- $K_{S,L}\pi^0$ agrees with U-spin symmetry
- $K_L 2\pi^0$ is the first measurement

€SII

Kev vs CP \pm ($K_S^0\pi^0$, $K_L^0\pi^0$) and y_{CP}

Single-tag yields can be got from $K_S \pi^0$, $K_L \pi^0$ branching fraction measurement results. Double-Tag yields are from U_{miss} fit. $U_{miss}(tag) = E_{miss}(tag) - p_{miss}(tag)$

This work gives: $y_{CP} = (0.980 \pm 2.429)\%$ (preliminary) Statistical only

Consistent with the published BESIII result: $y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$

CKM 2016, Mumbai

18

CPV in charm factory

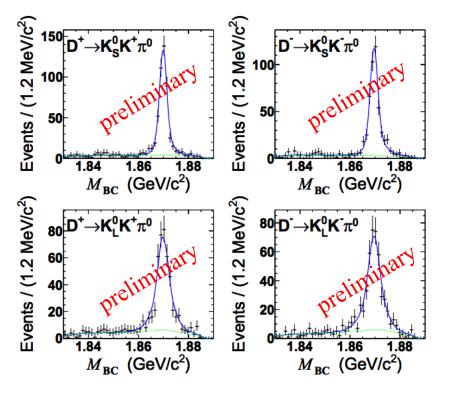
CP asymmetry:
$$A_{CP}(f) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

- ★ CPV in charm:
 - ✤ SM: <= a few %
 - ♦ NP: >~ 1%
- ★ World precision: ~ 0.1%
- ★ CLEO-c measured Acp based on single tag events
 PRD89, 072002 (2014)
 - ✤ at the order 1% for all modes
 - no evidence of CPV
 - systematics dominant

In future charm factory, it is important to reduce the systematic uncertainty by using a large *D* threshold sample Data: 2.93 fb⁻¹ taken at 3.773 GeV; Decays of interests: $D^0 \rightarrow \pi^+\pi^-, K^+K^-, K^-\pi^+, K_S^0\pi^0, K_S^0\eta, K_S^0\eta'$ $D^+ \rightarrow \pi^0\pi^+, \pi^0K^+, \eta\pi^+, \eta K^+, \eta'\pi^+, \eta'K^+, K_S^0\pi^+, K_S^0K^+$

BES	SIII prelin	ninary	$\mathcal{B}\pm(stat)\pm(sys)$	\mathcal{B}_{PDG}
4)	$ \begin{array}{c} K^{+}K^{-} & (4.2) \\ K^{-}\pi^{+} \\ K^{0}_{S}\pi^{0} \\ K^{0}_{S}\eta & (5.1) \end{array} $	$229 \pm 0.020 $	\pm 0.031) × 10 ⁻³ \pm 0.087) × 10 ⁻³ 0.006 ± 0.073) % 0.006 ± 0.032) % \pm 0.134) × 10 ⁻³ \pm 0.379) × 10 ⁻³	$\begin{array}{c} (1.421\pm 0.025)\times 10^{-3} \\ (4.01\pm 0.07)\times 10^{-3} \\ (3.93\pm 0.04) \% \\ (1.20\pm 0.04) \% \\ (4.85\pm 0.30)\times 10^{-3} \\ (9.5\pm 0.5)\times 10^{-3} \end{array}$
	$ \begin{array}{c} \pi^{0}K^{+} & (2.1)\\ \eta\pi^{+} & (3.7)\\ \eta K^{+} & (1.3)\\ \eta' \pi^{+} & (5.1)\\ \eta' K^{+} & (1.3)\\ \kappa_{S}^{0}\pi^{+} & (1.5) \end{array} $	$\begin{array}{c} 171 \pm 0.198 \pm \\ 790 \pm 0.070 \pm \\ 393 \pm 0.228 \pm \\ 122 \pm 0.140 \pm \\ 377 \pm 0.428 \pm \\ 591 \pm 0.006 \pm \end{array}$	$\begin{array}{c} \pm \ 0.025) \times 10^{-3} \\ \pm \ 0.060) \times 10^{-4} \\ \pm \ 0.075) \times 10^{-3} \\ \pm \ 0.124) \times 10^{-4} \\ \pm \ 0.210) \times 10^{-3} \\ \pm \ 0.202) \times 10^{-4} \\ \pm \ 0.033) \times 10^{-2} \\ \pm \ 0.065) \times 10^{-3} \end{array}$	$\begin{array}{c} (1.24\pm0.06)\times10^{-3}\\ (1.89\pm0.25)\times10^{-4}\\ (3.66\pm0.22)\times10^{-3}\\ (1.12\pm0.18)\times10^{-4}\\ (4.84\pm0.31)\times10^{-3}\\ (1.83\pm0.23)\times10^{-4}\\ (1.53\pm0.06)\times10^{-2}\\ (2.95\pm0.15)\times10^{-3} \end{array}$

- BESIII has good potential to explore CPV
- Many channels have best precisions



BFs and CPV in SCS decays

$D^+ \rightarrow K_S K^+$, $K_s K^+ \pi^0$, $K_L K^+$ and $K_L K^+ \pi^0$

- The singly Cabibbo-suppressed (SCS) decay mode D+→K⁰K⁺ is useful for the estimation of SU(3) violating effects in the *D* meson system.
- Direct CP violation in SCS D⁺ decays could arise from the interference between tree-level and penguin decay processes.
 - 6 CF ST modes v.s. DT signal modes; KL is inferred by EMC shower and the constraint $\Delta E = 0$
 - Two dimensional fits to $M_{BC}(tag)$ versus $M_{BC}(signal)$

BESIII preliminary

Mode	$\overline{\mathcal{B}}(\times 10^{-3})$	\mathcal{A}_{CP} (%)
$K^0_S K^{\pm}$	$3.06 \pm 0.09 \pm 0.10$	$-1.5 \pm 2.8 \pm 1.6$
$K^0_S K^{\pm} \pi^0$	$5.16 \pm 0.21 \pm 0.23$	$1.4\pm4.0\pm2.4$
$K_L^0 K^{\pm}$	$3.23 \pm 0.11 \pm 0.13$	$-3.0 \pm 3.2 \pm 1.2$
$K^0_L K^\pm \pi^0$	$5.22 \pm 0.22 \pm 0.21$	$-0.9 \pm 4.1 \pm 1.6$

- > $B(D^+ \rightarrow K_s K^+)$ agrees with the CLEO's
- > BFs of D+ \rightarrow K_sK+ π^0 , K_LK+ and K_LK+ π^0 are measured for the first time
- No evidence for CPV

Prospects of data taking at BESIII

- BESIII collected world's largest samples of J/ψ, ψ(2S), ψ(3770), Y(4260), ... from e⁺e⁻ production.
- It will continue to run a few years.

	BESHI	Goal
J/ψ	$1.3*10^9$ 21x BESII	10*10 ⁹
$oldsymbol{\psi}$ '	$0.6*10^9$ 24x CLEO-c	3*10 ⁹
ψ(3770)	2.93 fb ⁻¹ 21x CLEO-c	15~20 fb ⁻¹
Above open cha threshold	rm 0.5 fb ⁻¹ @ ψ (4040), 1.9 fb ⁻¹ @~4260, 0.5 fb ⁻¹ @4360, 1.0 fb ⁻¹ @4420, 0.5 fb ⁻¹ @4600, scan data @4.19~4.30GeV in 2017.	>15 fb ⁻¹
R scan and tau	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)	100 pb ⁻¹ (2015)	
ψ (4170)	3 fb ⁻¹ (2016)	

Opportunities for precise determination of strong phase and D mixing

Prospects of charmed hadron decays

Data at 3.773, 4.18 GeV and 4.63GeV

	Systematic	Statistical	
		~3 fb ⁻¹	+10 fb ⁻¹
$\Delta f_{D+}/f_{D+}$	~0.9% ^{BESIII}	2.6%	1.3%
$\Delta \mathbf{f}_{Ds+}/\mathbf{f}_{Ds+}(\mu+\tau)$	~1.4% ^{CLEO-c}	~1.5%	~0.7%
∆f _{D→K} /f _{D→K}	~0.5% ^{BESIII}	0.4%	0.2%
$\Delta \mathbf{f}_{D \to \pi} / \mathbf{f}_{D \to \pi}$	~0.7% ^{BESIII}	1.3%	0.6%
$ \mathbf{V}_{cs} ^{Ds+\rightarrowI+v}(\mu+\tau)$	~1.4% ^{CLEO-c}	~1.4%	~0.7%
V _{cs} ^{D0→K-e+v}	2.5% ^{BESIII} (2.4% ^{LQCD})	0.4%	0.2%
V _{cd} ^{D+→μ+v}	2.1% ^{BESIII} (1.9→0.5% ^{LQCD})	2.6%	1.3%
V _{cd} D0→π-e+v	4.5% ^{BESIII} (4.4% ^{LQCD})	1.3%	0.6%
(c _i ,s _i) in D ⁰ →K ⁰ π ⁺ π ⁻	Uncertianty for γ/ϕ_3	1%	0.5% 🛑
Λ +→nK-π+		4.8%	~2%
Λ _c ⁺→pK⁻π⁺		(0.6fb ⁻¹ @4.6)	(3fb ⁻¹ @4.6X)

€SII

Strong phases in D hadronic decays

	Decay mode	Quantity of interest	Comments	
\succ	$D ightarrow K_{ m s}^0 \pi^+ \pi^-$	c_i and s_i	Binning schemes as those used in the CLEO-c	
	prel. release		analysis. With future, very large $\psi(3770)$ data	
	/		sets, it might be worthwhile to explore alter-	
			native binning.	
	$D ightarrow K_{ m s}^0 K^+ K^-$	c_i and s_i	Binning schemes as those used in the CLEO-c	
	S		analysis. With future, very large $\psi(3770)$ data	
			sets, it might be worthwhile to explore alter-	
			native binning.	ICh DUD 2016 025
~		D 6		ICb-PUB-2016-025
	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	R, ð	In bins guided by amplitude models, currently	
			under development by LHCb.	
	$D \rightarrow K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme can be guided by the CLEO	Status at BESIII
~ /			model [18] or potentially an improved model	
			from LHCb in the future.	⊨ published
•				
\Box	$D\!\to\pi^+\pi^-\pi^+\pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements	➤ under study
			of F_+ in bins or c_i and s_i in bins could be explored.	S in plan
			capiorea.	
\succ	$D\!\to K^\pm\pi^\mp\pi^0$	R, δ	Simple 2-3 bin scheme could be considered.	
			-	
	$D\!\to K^0_{\rm S} K^\pm \pi^\mp$	R, δ	Simple 2 bin scheme where one bin encloses	
			the K^* resonance.	
	$D \! ightarrow \pi^+ \pi^- \pi^0$	F.	No binning required as $F_+ \sim 1$.	
			The binning required as $r_+ \approx 1$.	
	$D \rightarrow K_{\rm s}^0 \pi^+ \pi^- \pi^0$	F_+ and c_i and s_i	Unbinned measurement of F_+ required. Ad-	
	5		ditional measurements of F_+ or c_i and s_i in	
			bins could be explored.	
~	$D \rightarrow W^+ W^- = 0$	E	Indianal management of the last	
	$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i	
			and s_i possible.	
			and of poppion.	
	$D\!\to K^\pm\pi^\mp$	δ	Of low priority due to good precision available	
			through charm-mixing analyses.	

Summary

- Unique access to strong phases & ability to extract modelindependent results with charm at threshold
- BESIII is successfully operating since 2008

 Collected large data samples in the τ-charm mass region
- BESIII will continue to run 6 8 years.
- BESIII team has learned and developed technology for charm mixing and CPV at threshold.
 - 2nd generation of QC analyses, while CLEO-c activity is declining.
 - more precision, new modes, new variables
 - some challenges on the systematics
- Future goals >15 /fb ψ (3770) data, and roughly 50M D^0 , 50M D^+ , 1M Λ_c , 15M Ds, produced near threshold

Many works are ongoing; Stay tuned!

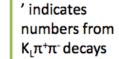
Thank you!! 谢谢!

Connections of c_i, s_i and $c'_i s'_i$

From the CP tag modes, we are able to find c_i and c'_i

$$\begin{split} M_{i} &= \frac{S_{\pm}}{2S_{f}} (K_{i} \pm 2c_{i}\sqrt{K_{i}K_{\overline{\imath}}} + K_{\overline{\imath}}) & (CP, K_{S}^{0}\pi^{+}\pi^{-}) \\ M_{i}' &= \frac{S_{\pm}}{2S_{f}} (K_{i}' \mp 2c_{i}'\sqrt{K_{i}'K_{\overline{\imath}}'} + K_{\overline{\imath}}') & (CP, K_{L}^{0}\pi^{+}\pi^{-}) \end{split} \begin{bmatrix} \mathbf{M}_{i} \mathbf{y} \\ \mathbf{S}_{+}(S_{L}) \\ \mathbf{K}_{i}(K_{L}) \end{bmatrix}$$

 M_i yields in each bin of Dalitz plot for CP even(odd) modes. $S_+(S_-)$, number of single tags for CP even(odd) modes. $K_i(K_{\bar{\iota}})$, yields in each bin of Dalitz plot in flavor modes.


From the Double Dalitz modes, we are able to find c_i , c'_i , s_i , s'_i

$$\begin{split} M_{i,j} &= \frac{N_{D,\overline{D}}}{2S_{f}^{2}} (K_{i}K_{\overline{\jmath}} + K_{\overline{\imath}}K_{j} - 2\sqrt{K_{i}K_{\overline{\jmath}}K_{\overline{\imath}}K_{j}} (c_{i}c_{j} + s_{i}s_{j})) \quad (K_{S}^{0}\pi^{+}\pi^{-}, K_{S}^{0}\pi^{+}\pi^{-}) \\ M_{i,j}' &= \frac{N_{D,\overline{D}}}{2S_{f}} (K_{i}K_{\overline{\jmath}}' + K_{\overline{\imath}}K_{j}' + 2\sqrt{K_{i}K_{\overline{\jmath}}'K_{\overline{\imath}}K_{j}'} (c_{i}c_{j}' + s_{i}s_{j}')) \quad (K_{S}^{0}\pi^{+}\pi^{-}, K_{L}^{0}\pi^{+}\pi^{-}) \end{split}$$

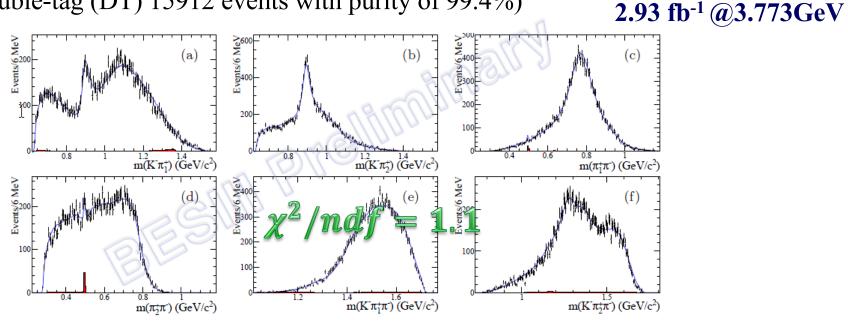
 $M_{i,j}$ yields in each ith bin of the first Dalitz plot and the jth bin for the second Dalitz plot.

 S_f , number of single tags for flavor modes.

 $K_i(K_{\bar{\iota}})$, yields in each bin of Dalitz plot in flavor modes.

EESI Impacts in LHCb γ/ϕ_3 measurement

Run Period $[E_{CM}]$	Collected / Pro-	Cumulative	Year attained
	jected luminosity	yield factor	
	per run	compared to	
		Run 1	
Run 1 [7,8 TeV]	3 fb^{-1}	1	2012
Run 2 [13 TeV]	5 fb^{-1}	4	2018
LHCb phase-1 upgrade [14 TeV]	$50 {\rm fb}^{-1}$	60	2030
LHCb phase-2 upgrade [14 TeV]	$300 \ {\rm fb}^{-1}$	$\sim \! 400$	2035(?)


- By considering the evolution of the LHCb measurements, which may differing among modes, this strong phase uncertainty is
 - 1.7 to 2.2° at the end of Run 2
 - 1.8 to 2.5° at the end of the phase 1 upgrade
- So now compared to the total precision an γ from LHCb expected
 - Run I $\sigma(\gamma) = 7^{\circ}$ limited impact of strong phase measurements
 - Run II $\sigma(\gamma) = 3.5^{\circ}$ becomes significant
 - Upgrade phase I σ(γ) ~ strong phase uncertainty

€SШ

Amplitude analysis of $D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$

- This decay is one of three golden decay mode of D^0
- The knowledge of intermediate process can be widely used in many measurements, such as to study branching fraction and strong phase used in CKM unitary triangle γ measurement
- Construct coherent sum of 23 amplitudes and fit to data (double-tag (DT) 15912 events with purity of 99.4%)

- Improvements over the existing results!
- Strong phase extraction is under studies

Here is a set of a set of the se

With the fit fractions (FF) of every components and the branching ratio of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$, we calculate the branching ratios of the components with $Br(Component) = FF(Componet)Br(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)$. The results are listed in the table below :

Component	Branching fraction $(\%)$	PDG value $(\%)$
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23
$D^0 \to K^- a_1^+ (1260) (\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6
$D^0 \to K_1^-(\bar{1}270)(\bar{K}^{*0}\pi^-)\pi^+$		0.29 ± 0.03
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.02 \pm 0.01$	0.23 ± 0.03
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.18 \pm 0.02$	0.51 ± 0.23
$D^0 \to \bar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.03 \pm 0.02$	0.99 ± 0.23
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26

In the table, the first and second uncertainties of the branching ratios are statistical and systematic uncertainties from the fit fractions, the third errors is the uncertainties related to $Br(D^0 \rightarrow K^-\pi^+\pi^+\pi^-)$ in PDG.