Introduction Penguin pollution in the golden modes Conclusions Precision measurements of branching fractions Consequences

sin 2 β from $B \rightarrow J/\psi K$

Martin Jung

Talk at CKM 2016 1st of December 2016, Mumbai, India

Extracting weak phases in hadronic decays

UT angles extracted from non-leptonic decays

Hadronic matrix elements (MEs) main theoretical difficulty!

Options:

- Lattice: not (yet) feasible for (most) 3-meson MEs
- Other non-perturbative methods, e.g. QCDSR: idem, precision
- Factorization: applicability, power corrections [but see Uli's talk]
- Symmetry methods: limited applicability or precision
- New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs

- Revisit approximations for precision analyses
- Necessary due to apparent smallness of NP

Here: Improve SU(3) analysis in $B \rightarrow J/\psi M$

Flavour SU(3) and its breaking

SU(3) flavour symmetry $(m_u = m_d = m_s)...$

- does not allow to calculate MEs, but relates them (WE theorem)
- provides a model-independent approach
- allows to determine MEs from data
 improves "automatically"!
- includes final state interactions

SU(3) breaking...

- is sizable, $\mathcal{O}(20-30\%)$
- can systematically be included: tensor (octet) ~ m_s [Savage'91,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
 ▶ even to arbitrary orders [Grinstein/Lebed'96]

Main questions:

- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

flavour octet

$$B
ightarrow J/\psi M$$
 decays - basics

 $B_d \rightarrow J/\psi K$, $B_s \rightarrow J/\psi \phi$:

- Amplitude $A = \lambda_{cs}A_c + \lambda_{us}A_u$
- Clearly dominated by A_c [Bigi/Sanda '81]
- Very clear experimental signature
- Subleading terms:
 - Doubly Cabibbo suppressed
 - Penguin suppressed
 - Stimates $|\lambda_{us}A_u|/|\lambda_{cs}A_c| \lesssim 10^{-3}$

[Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]

The golden modes of *B* physics: $|S| = \sin \phi$

However:

- Quantitative calculation still unfeasible [but see Frings+'15 \rightarrow Uli]
- Fantastic precision expected at LHC and Belle II
- Subleading contributions should be controlled: Apparent phase $\tilde{\phi} = \phi_{\text{SM}}^{\text{mix}} + \Delta \phi_{\text{NP}}^{\text{mix}} + \Delta \phi_{\text{pen}(\text{SM}+\text{NP})}$

Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u \neq 0 \Rightarrow S \neq \sin \phi, \ A_{\rm CP}^{\rm dir} \neq 0$$

Idea: U-spin-related modes constrain A_u [Fleischer'99, Ciuchini et al.'05,'11, Faller/Fleischer/MJ/Mannel'09, ...]

- Increased relative penguin influence in b
 ightarrow d
- Extract $\phi = \phi_{\mathrm{SM}}^{\mathrm{mix}} + \Delta \phi_{\mathrm{NP}}^{\mathrm{mix}}$ and $\Delta \phi_{\mathrm{pen}}$
- Issue: Dependence of $\Delta \phi_{\mathrm{pen}}$ on SU(3) breaking

Using full SU(3) analysis: [MJ'12]

ightarrow Determines model-independently SU(3) breaking: $\sim 20\%$

Improved extraction of $\phi_d (\rightarrow \Delta \phi_{NP}^{mix})$ and $\Delta \phi_{pen}$ \blacktriangleright Correction to an already very small effect

Power counting

SU(3) breaking typically $\mathcal{O}(20-30\%)$

Several other suppression mechanisms involved:

- CKM structure (λ , but also $R_u \sim 1/3$)
- "Topological suppression: penguins and annihilation
- $1/N_C$ counting

All these effects should be considered!

- **b** Combined power counting in $\delta \sim 30\%$ for all effects
- Neglect/Constrain only multiply suppressed contributions
- Numerically: contribution $x \sim \delta^n \rightarrow x \leq \delta^{(2n-1)/2}$

Yields predictive frameworks with weaker assumptions!

- Uses full set of observables for related decays
- Assumptions can be checked within the analysis
 ▶ ΔA_{CP}, ΔΔS sensitive to SU(3) breaking for penguins

BR measurements and isospin violation [MJ'16]

Again: detail due to high precision and small NP Not specific to $B \rightarrow J/\psi M!$

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon o B^+ B^-$ vs. $B^0 ar{B}^0$
- LHCb: normalization mode, usually obtained from *B* factories Assumptions entering this normalization:
 - PDG: assumes $r_{+0}\equiv \Gamma(\Upsilon o B^+B^-)/\Gamma(\Upsilon o B^0 ar{B}^0)\equiv 1$
 - LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
- Measurements in r₊₀^{HFAG} assume isospin in exclusive decays
 This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.027 \pm 0.037$
- Sospin asymmetry $B \rightarrow J/\psi K$: $A_I = -0.009 \pm 0.024$

A word on (strong) meson mixing

Neutral singlets and octets can mix under QCD Complicates SU(3) analysis

$$B
ightarrow J/\psi P$$
: η, η' not necessary to determine ϕ_d

 $B \rightarrow J/\psi V$: ϕ central mode

Meson mixing has to be dealt with

For $N_C \rightarrow \infty$ in the SU(3) limit: degenerate $P_{1,8}$ and $V_{1,8}$ Relative size of corrections determines mixing angle Large mixing does not mean breakdown of SU(3)!

 η, η' : large correction to $1/N_C$ from anomaly (singlet) η, η' remain approximate SU(3) eigenstates $\phi, \omega: 1/N_C$ effects small (OZI) \rightarrow SU(3) breaking dominant eigenstates according to strangeness content, large mixing

> Only the octet part can be controlled by K^* and ρ ! Data for ω necessary to control singlet in SU(3)

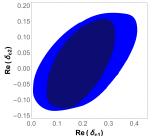
Annihilation contributions in $B \rightarrow J/\psi M$

Annihilation is important!

- Suppression unclear for heavy final states
 - $ightarrow \sim 20\%$ in $A_c(B
 ightarrow DD)$ [MJ/Schacht'15]
- Determines singlet contributions in $B_s
 ightarrow J/\psi \phi$
- Affects extraction of $\eta \eta'$ mixing angle from $B_{d,s} o J/\psi \eta^{(\prime)}$
- Its neglect in A_u correlates e.g. $B^-\to J/\psi\pi^-$ and $B^0\to J/\psi K^0$ directly
 - Overly "precise" predictions for CP asymmetries
- In $B \rightarrow J/\psi M$ three annihilation contributions:
 - Annihilation in A_c, taken into account where appropriate
 - Two annihilation contributions in A_u , $a_2 \sim a_1/N_C$
 - ▶ $a_2 \ll 1 \rightarrow BR(B_s \rightarrow J/\psi\pi^0, \rho^0) \approx 0$ $BR(B_s \rightarrow J/\psi\rho) \le 3.6 \times 10^{-6} (90\%$ CL)
 - No improvement from inclusion (unlike [Ligeti/Robinson'15])
 - Only leading contribution included later

SU(3) breaking in $B \rightarrow J/\psi P$ [MJ('16), preliminary] Fit to $B_{d,u,s} \rightarrow J/\psi(K, \pi)$ data (including correlations)

- PDG uncertainties applied
 Experimental issue: R_{πK}
- Excellent fit (χ²/dof ≤ 1)
 Bad fit w/o SU(3) breaking
- SU(3) breaking ≤ 55% allowed
 ▶ Real SU(3) breaking ≤ 30%



- 1. SU(3)-breaking parameters perfectly within expectations
- 2. Strong correlation between $Re(\delta C_1)$ and Re(P):
 - Cancellations for large P
 - Assumption on SU(3) breaking affects penguin shift

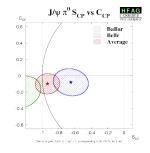
Remaining weaker approximations:

- SU(3) breaking for A_c , only (but to all orders for $P = \pi, K$!)
- EWPs with $\Delta I = 1, 3/2$ neglected in \mathcal{A}_c (tiny!)
- $A(B_s \rightarrow J/\psi \pi^0) = 0$: testable (challenging)

"Penguins" in $B \rightarrow J/\psi P$ [MJ('16), preliminary] Fit to $B_{d.u.s} \rightarrow J/\psi(K, \pi)$ data (including correlations)

- PDG uncertainties applied
 ▶ Experimental issue: S(B → J/ψπ⁰)
- Annihilation included
 ▶ P/T, A/T ≤ (100, 55, 16)%
- Pen. + Ann. consistent with 0

- No significant A_u anywhere
 ➡ no motivation for enhanced P, A_u
- 2. ϕ_d stable even with enhancements
- 3. Large CP asymmetries in $B_s \rightarrow J/\psi K$ possible with cancellations
 - Exp. progress important!



-	P, A/T	$\phi/^{\circ}$		
	100% (PDG)	22.2 ± 0.9		
	55% (PDG)	22.1 ± 0.8		
\langle	55% (Belle)	22.0 ± 0.7		
•	16% (PDG)	22.0 ± 0.8		
	0	21.7 ± 0.7		

Conclusions

- Smallness of NP poses new challenges to CPV interpretation
- SU(3) with breaking enables model-independent analyses
- Combined power counting of small effects necessary
- High precision → Control penguins and annihilation
 Possible for φ_d by B → J/ψP |Δφ| ≤ 0.6° (95% CL)
 B → J/ψπ⁰ and B_s → J/ψK central
- Interplay with SU(3) breaking
 Careful interpretation of BR data necessary
- Results will improve with coming data, penguins tamed
- QCD-mixing of mesons complicates $B \rightarrow J/\psi V$ analysis • Nevertheless possible, work in progress

 $b \rightarrow c \bar{c} s$ modes remain "golden"!

Observable	Value	Ref./Comments
$\frac{1}{c_{-}}$ BR $(B^{-} \rightarrow J/\psi K^{-})$	$(10.27\pm0.31) imes10^{-4}$	
$rac{1}{c} \mathrm{BR}(B^- ightarrow J/\psi \pi^-)$	$(0.38\pm0.07) imes10^{-4}$	
$\frac{\mathrm{BR}(B^- \to J/\psi\pi^-)}{\mathrm{BR}(B^- \to J/\psi K^-)}$	0.040 ± 0.004	scaling factor 3.2
	0.0386 ± 0.0013	Excluding BaBar
	0.052 ± 0.004	Excluding LHCb
$rac{1}{c_0}\mathrm{BR}(ar{B}^0 o J/\psiar{K}^0)$	$(8.73 \pm 0.32) imes 10^{-4}$	-
$r \frac{\text{BR}(B^- \to J/\psi K^-)}{\text{BR}(\bar{B}^0 \to J/\psi \bar{K}^0)}$	1.090 ± 0.045	correlations neglected
$rac{1}{c_0} \mathrm{BR}(ar{B}^0 ightarrow J/\psi \pi^0)$	$(0.176\pm 0.016) imes 10^{-4}$	scaling factor 1.1
$\frac{f_s}{f_d} \frac{\text{BR}(\bar{B}_s \to J/\psi K_S)}{\text{BR}(\bar{B}^0 \to J/\psi K_S)}$	0.0112 ± 0.0006	$f_s/f_d=f_s/f_d _{\rm LHCb}$
$\frac{\mathrm{BR}(\bar{B}_{s} \to J/\psi K_{s})}{\mathrm{BR}(\bar{B}^{0} \to J/\psi K_{s})}$	$\textbf{0.038} \pm \textbf{0.009}$	uses $f_s/f_d = f_s/f_d _{\mathrm{Tev}}$
$\frac{1}{10} BR(\bar{B}^0 \to J/\psi \eta)$	$0.123 \pm 0.019 \times 10^{-4}$	
$\ddot{\mathrm{BR}}(\bar{B}_s \to J/\psi\eta)$	$(5.1 \pm 1.1) imes 10^{-4}$	
$R_{s} = \frac{\mathrm{BR}(B_{s} \to J/\psi\eta')}{\mathrm{BR}(\bar{B}_{s} \to J/\psi\eta)}$	$\textbf{0.73} \pm \textbf{0.14}$	$ ho(BR,R_s)=-23\%$
Rs	0.902 ± 0.084	$ ho(R_s,R)=1\%$
$R = rac{{ m BR}(ar{B}^0 ightarrow J/\psi \eta')}{{ m BR}(ar{B}^0 ightarrow J/\psi \eta)}$	1.11 ± 0.48	$ ho({\it R},{\it R}_\eta)=-73\%$
$rac{f_d}{f_s}R_\eta = rac{f_d}{f_s}rac{\mathrm{BR}(B^0 o J/\psi\eta)}{\mathrm{BR}(B_s o J/\psi\eta)}$	0.072 ± 0.024	$ ho(R_\eta,R_s)=9\%$

Input Values for $B \rightarrow J/\psi P$ Decays: BRs

Input Values for $B \rightarrow J/\psi P$ Decays: CP Asymmetries

Observable	Value	Ref./Comments	
$\mathcal{A}_{\rm CP}(B^- o J/\psi K^-)$	0.003 ± 0.006		
${\cal A}_{ m CP}(B^- o J/\psi \pi^-)$	0.001 ± 0.028		
$-\eta_{\rm CP} S_{\rm CP} (\bar{B}^0 o J/\psi K_{S,L})$	0.687 ± 0.019		
$\mathcal{A}_{\mathrm{CP}}(ar{B}^0 o J/\psi K_{\mathcal{S},L})$	0.016 ± 0.017	$ ho(\mathcal{S}_{ ext{CP}},\mathcal{A}_{ ext{CP}})=-15\%$	
${\cal S}_{ m CP}(ar B^0 o J/\psi \pi^0)$	-0.94 ± 0.29		
	-0.65 ± 0.22	Belle only	
${\cal A}_{ m CP}(ar B^0 o J/\psi \pi^0)$	0.13 ± 0.13		
	0.08 ± 0.17	Belle only	
$\mathcal{S}_{\mathrm{CP}}(ar{B}_{s} ightarrow J/\psi K_{S})$	-0.08 ± 0.41		
$\mathcal{A}_{\mathrm{CP}}(ar{B}_s o J/\psi K_S)$	$\textbf{0.28}\pm\textbf{0.42}$		
${\cal A}_{\Delta\Gamma}(ar B_s o J/\psi K_S)$	$0.49^{+0.77}_{-0.65}\pm0.06$		
$f_s/f_d _{\rm LHCb}$	0.259 ± 0.015		
y _s	0.0611 ± 0.0037		
$r = f_{+-}/f_{00}$	1.027 ± 0.037		

Data in both tables: PDG, HFAG, LHCb, Belle, BaBar

Topological amplitudes in $B \rightarrow J/\psi P$

Mode	С	Ec	\tilde{P}_2	A ^u	PA	E ^u
$ar{B}^0 ightarrow J/\psi ar{K}^0$	1	0	1	0	0	0
$ar{B}^{0} ightarrow {J}/\psi \pi^{0} imes \sqrt{2}$	1	0	1	0	0	-1
$B^- ightarrow J/\psi K^-$	1	0	1	1	0	0
$B^- ightarrow J/\psi \pi^-$	1	0	1	1	0	0
$ar{B}_{s} ightarrow {J}/\psi K^{0}$	1	0	1	0	0	0
$ar{B}_s ightarrow J/\psi \pi^0 imes \sqrt{2}$	0	0	0	0	0	-1
$ar{B}^0 ightarrow {J}/\psi \eta_8 imes \sqrt{6}$	-1	0	-1	0	0	-1
$ar{B}^0 ightarrow {J/\psi \eta_1 imes \sqrt{3}}$	1	$\sqrt{3}$	1	0	3	1
$\bar{B}_s ightarrow J/\psi \eta_8 imes \sqrt{6}$	2	0	2	0	0	-1
$\bar{B}_s ightarrow J/\psi \eta_1 imes \sqrt{3}$	1	$\sqrt{3}$	1	0	3	1

Table : Topological amplitudes contributing to $B \rightarrow J/\psi P$ in the SU(3) limit.

Power counting explicit

Contribution	CKM	$1/N_C$	Pen.	Ann.	П
С	1	1	1	1	1
A^c	1	δ	1	δ	δ^2
$ ilde{P}_2$	R _u	δ	δ	1	$R_u imes \delta^2$
$ ilde{P}_4$	R _u	δ^2	δ	δ	$R_u imes \delta^4$
A_1^u	R _u	1	1	δ^2	$R_u imes \delta^2$
$A_2^{\overline{u}}$	R _u	δ	1	δ^2	$R_u imes \delta^3$

Table : Relative power counting for the contributions to $B \rightarrow J/\psi P$ decays with $b \rightarrow d$ transitions ($b \rightarrow s$ transitions receive an additional factor of λ^2 in the contributions to A_u). There is an additional factor of δ for the SU(3) corrections to a given amplitude.

Factorization in $B \rightarrow J/\psi M$

- $B \rightarrow J/\psi M$ formally factorizes for $m_{c,b} \rightarrow \infty...$ [BBNS'00] b ... but corrections are large: $\Lambda_{QCD}/(\alpha_s m_{c,b})$
- $\begin{array}{l} B \rightarrow J/\psi M \text{ formally factorizes for } N_C \rightarrow \infty \dots [\texttt{Buras+'86}] \\ \clubsuit \dots \text{ but corrections are large: } A_c \sim C_0 v_0 + C_8 (v_8 a_8) \text{ [Frings+'15]} \\ \text{ Non-factorizable } a_8, v_8 \sim v_0/N_C, \text{ but } C_8 \sim 17C_0! \end{array}$
 - $BR(B \rightarrow J/\psi M)$ remains uncalculable N.B.: No reason to assume $F_{B\rightarrow K}/F_{B\rightarrow \pi}$ for SU(3) breaking

Factorization for P/T: [Frings+'15 \rightarrow see Uli's talk Tuesday]

- $\mathcal{A}(B \rightarrow J/\psi M) = \lambda_{cs}A_c + \lambda_{us}A_u$, A_u "penguin pollution"
- ▶ $A_u \sim p + a$, includes penguin and annihilation contributions No annihilation in $B_d \rightarrow J/\psi K$, but in $B_s \rightarrow J/\psi \phi$
- $p = \sum_{j} \langle J/\psi M | \mathcal{O}_{j}^{u} | B \rangle = \sum_{k} \langle J/\psi M | \mathcal{O}_{k}^{c} | B \rangle + \mathcal{O}(\Lambda/m_{J/\psi})$
- Estimating $\langle J/\psi M | \mathcal{O}_k^c | B \rangle$ in $1/N_C$ yields $\Delta \phi_{d,s}|_p \lesssim 1^\circ$

Reparametrization invariance and NP sensitivity

$$\mathcal{A} = \mathcal{N}(1 + r \, e^{i\phi_s} e^{i \, \phi_w})
ightarrow \tilde{\mathcal{N}}(1 + ilde{r} \, e^{i ilde{\phi}_s} e^{i ilde{\phi}_w})$$

Reparametrization invariance:

[London et al.'99,Botella et al.'05,Feldmann/MJ/Mannel'08]

Transformation changes weak phase, but not form of amplitude

Sensitivity to (subleading) weak phase lost (presence visible)

- $\phi_w = \gamma$ in given analyses
- Usually broken by including symmetry partners

▶ Proposals to extract γ in $B \rightarrow J/\psi P$ or $B \rightarrow DD$

 However: partially restored when including SU(3) breaking! [MJ/Schacht'14]

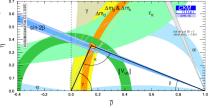
Season for large range for γ observed in [Gronau et al.'08]

- Extracted phase fully dependent on SU(3) treatment
- **•** NP phases in \mathcal{A} not directly visible
- NP tests remain possible
- Addition of new terms, e.g. $A_c^{\Delta l=1}$ additional option

(Absolute) BR measurements for B mesons

BR measurements are important for...

- fundamental parameters
 ▶ |V_{ub}|, |V_{cb}|, α(φ₂), β(φ₁),...
- NP searches, specifically isospin asymmetries



$$A_{I}(X) = \frac{\overline{\Gamma}(B^{0} \to X_{d}^{0}) - \overline{\Gamma}(B^{+} \to X_{u}^{+})}{\overline{\Gamma}(B^{0} \to X_{d}^{0}) + \overline{\Gamma}(B^{+} \to X_{u}^{+})}$$
$$A_{I}(J/\Psi K, D_{s}D, K^{*}\gamma \dots)$$

BR measurements require normalization:

- $N_{B\bar{B}} imes f_{+-,00}$ for B factories
- LHCb: ratios of BRs, absolute measurements from B factories

Determination of $f_{+-,00}$ affects all BR measurements

$\Gamma(\Upsilon o B^+ B^-) = \Gamma(\Upsilon o B^0 ar{B}^0)?$

Isospin limit: $\Gamma(\Upsilon \to B^+B^-) = \Gamma(\Upsilon \to B^0\bar{B}^0)$ Naively corrections $\mathcal{O}(\%)$

However: corrections parametrically enhanced $\sim \pi/\nu \approx 50$ Potentially [Atwood/Marciano'90,Kaiser+'02]

$$r_{+0} \equiv f_{+-}/f_{00} = \Gamma(\Upsilon \rightarrow B^+B^-)/\Gamma(\Upsilon \rightarrow B^0\bar{B}^0) \sim 1.2!$$

Then again...

- Smaller enhancement due to meson & vertex structure [Byers/Eichten,Lepage'90,Dubynskiy+'07]
- Experimentally $r_{+0} \sim 1.05$ [HFAG'14]

Two lessons:

Assumption of $r_{+0} \equiv 1$ not justified for precision results! $r_{+0} - 1 \sim O(\%) \sim$ "standard" isospin breaking

Testing isospin in B decays

Simplest case: test $\Gamma_{+} \stackrel{!}{=} \Gamma_{0}$ for some decay Experimentally: observe $N_{+(0)}$ charged (neutral) decays,

$$\Gamma_{+}-\Gamma_{0}\sim\frac{1}{N_{B\bar{B}}}\left[\frac{N_{+}}{f_{+-}}-\frac{N_{0}}{f_{00}}\right]$$

- With assumption on r_{+0} , $\Gamma_{+} \Gamma_{0}$ can be determined
- With assumption on $\Gamma_+ \Gamma_0$, r_{+0} can be determined
- Precision tests: we have to avoid both assumptions!

Literature:

- PDG: assumes $r_{+0} \equiv 1$ for their BR values
- LHCb: uses $f_u \equiv f_d$, but takes r_{+0} from HFAG
- HFAG: $r_{+0} = 1.058 \pm 0.024$, assuming $\Gamma_+ \equiv \Gamma_0$ in 6/7 cases (specifically $\Gamma(B^+ \to J/\psi K^+) \equiv \Gamma(B^0 \to J/\psi K^0)$)
- Not suited for precision tests!

Measuring r_{+0} w/o isospin assumption

Avoiding isospin assumptions altogether: [MARK III Coll.'86, BaBar'05] Compare singly- and doubly-tagged events in the same final state

$$\begin{split} N_s &= 2N_{B\bar{B}} f_{00} \epsilon_s \operatorname{BR}(B^0 \to X^0) \\ N_d &= N_{B\bar{B}} f_{00} \epsilon_d \operatorname{BR}(B^0 \to X^0)^2 \\ f_{00} &= \frac{C N_s^2}{4N_d N_{B\bar{B}}} \stackrel{\text{BaBar}}{=} 0.487 \pm 0.010 \pm 0.008 \ (D^* \ell \nu, \text{part.rec.}) \end{split}$$

- Could be significantly improved with full BaBar dataset
- Should be done with Belle I data!
 Issue: N_{BB} less precise, but comparable precision possible
- Has to be improved by Belle II for precision BR measurements
 ▶ Off-resonance data below \u03c6(4S) important

Determination of r_{+0} for isospin tests

Second option: use $\Gamma_+\equiv\Gamma_0$ for inclusive decays $_{[Gonau+'06]}$

- Isospin-breaking additionally suppressed by $1/m_b^2$
- $r_{+0} = 1.01 \pm 0.03 \pm 0.09 \left(X_c^{+0} \ell \nu \right)$ [Belle'03]
 - ▶ $r_{+0} = 1.00 \pm 0.03 \pm 0.04$ (updated inputs)

Further significant reduction of systematics possible?

 $f_{+-} + f_{00} \stackrel{!}{=} 1?$

- Measurement: $BR(\Upsilon(4S)
 ightarrow \mathrm{non} B\bar{B}) \leq 4\%$ [CLEO'96]
- No non- $B\bar{B}$ mode observed with BR $\geq 10^{-4}$ [HFAG]
- $f_{+-} + f_{00} = 1$ assumed in the following

• Main assumption here, needs experimental confirmation! Averaging the two values for r_{+0} w/o isospin bias: [MJ'16]

$r_{+0} = 1.027 \pm 0.037$

- Only this value that can be used for isospin asymmetries
- Improvable with existing data, Belle II has to do better!
- Implies a $\sim 2\%$ lower bound for BR precision at the moment

Potential for Belle II

- 1. Belle II can significantly improve the existing measurements
 - Singly- vs. doubly-tagged $B^0 o D^{*-} (ar D^0 \pi^-) \ell^+
 u$
 - r₊₀ from inclusive modes
 - Limit on non- $B\bar{B}$ decay modes of the $\Upsilon(4S)$
- 2. Potential of $B^{+,0} \to \bar{D}^{*0,-}(\bar{D}^{0,-}\pi^0)\ell^+\nu$): [MJ'16]
 - Lower reconstruction efficiency b countered by high luminosity
 - First direct measurement of f_{+−}
 Image here the state of f_{+−} + f₀₀ ≃ 1 (main assumption so far)
 - Allows for measuring r₊₀ as a double-ratio ^U
 ▶ N_{RR} cancels together with other systematic uncertainties

Precision challenge met by Belle II New measurements to test assumptions Isospin tests with $A_I \sim \mathcal{O}(\leq \%)$ become possible!

Implications for $B \rightarrow J/\psi K$

 Present averages have uncertainties around 3% [PDG]
 For c₀/c₊ ≡ r₊₀ = 1, A_I(J/ΨK) = −0.044 ± 0.024 Discussed e.g. in [Feldmann+'08,MJ/Mannel'09,MJ'12,Ligeti/Robinson'15]

Additional measurement [BaBar'04], updated inputs: $r_{+0} BR(B^+ \rightarrow J/\psi K^+)/BR(B^0 \rightarrow J/\psi K^0) = 1.090 \pm 0.045$

This yields the averages (accidentally small correlations): [MJ'16] BR($B^+ \to J/\psi K^+$) = (9.95 ± 0.32) × 10⁻⁴ [PDG : (10.27 ± 0.31)] BR($B^0 \to J/\psi K^0$) = (9.08 ± 0.31) × 10⁻⁴ [PDG : (8.73 ± 0.32)] $A_I(J/\Psi K)$ = -0.009 ± 0.024 (SM expectation $\leq 1\%$)

Errors basically unchanged. No sign of an isospin asymmetry!

- Relevant in penguin pollution analyses [MJ'12,('16),Ligeti/Robinson'15]
 ▶ Improvement important for precision in β(φ₁)
- Note: also $A_I(J/\Psi\pi) [\stackrel{!}{\sim} 20 \times A_I(J/\Psi K)]$ compatible with 0
- Side effect: $A_I(J/\Psi K)$ can be used to determine f_u/f_d at LHCb

Consequences for other decay modes Possible violation of quasi-isospin sum rule in $\bar{B}^{0,-} \rightarrow D_s^- D^{+,0}$ [LHCb'13, MJ/Schacht'14] possibly affected by f_u/f_d , extraction via $A_I(J/\Psi K)$

 $B \rightarrow K^* \gamma$:

Isospin asymmetry including production asymmetry:

 $A_I(K^*\gamma) = 0.042 \pm 0.032$

Smaller shift (r₊₀ included in one of the measurements)

 $B o X_s \gamma$: Expected to be ~ 0 (as for $B o X_c \ell \nu$),

 $A_I(X_s\gamma) = -0.001(58)(5)(19) \text{ (stat)(syst)}(r_{+0})$

r₊₀ dominating systematic uncertainty!

Determination of V_{cb} : In principle relevant However: effect small for $\Gamma_+ + \Gamma_0$, also $|V_{cb}| \sim \sqrt{BR}$ Only important for non-averaged determinations