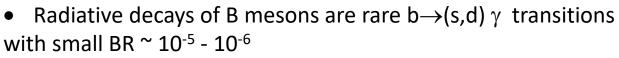
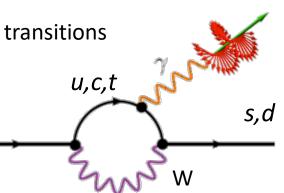
penden

0

A. Oyanguren (IFIC – CSIC/U.Valencia) for the LHCb collaboration


time 。

CKM 2016, Mumbai

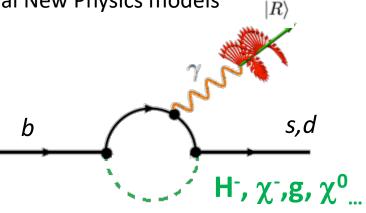

Maia

<u>Outline</u>

- Mixing-induced CPV from radiative decays
- Radiative decays at LHCb
- First time dependent analysis of $B_s \rightarrow \phi \gamma$ decays
- Results and interpretation
- Prospects
- Conclusions

• In the SM the photons emitted are polarized b left-handed, with a small right-handed _____ correction O(m_{d,s}/m_b)

 $|L\rangle$


• Oscillations will be observable in radiative B meson decays if:

 \rightarrow Both neutral B_(s) and $\overline{B}_{(s)}$ decay into the same exclusive CP state: Ex: B_(s) \rightarrow V γ

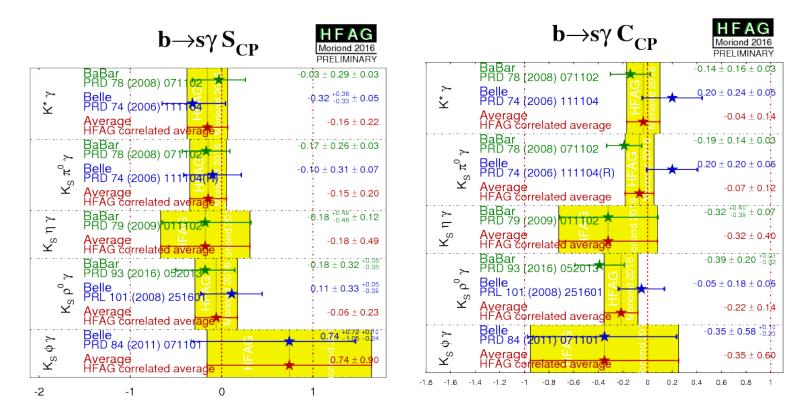
 \rightarrow The photons produced in these decays are a mixture of right and left-handed polarizations, as predicted by several New Physics models

[Atwood, Gronau, Soni PRL79(1997)185]

Measuring the oscillation of radiative B meson decays one has access to the photon polarization information

• The time dependent decay rate for a $B_{(s)} \rightarrow V\gamma$ a and $\overline{B}_{(s)} \rightarrow V\gamma$:

$$\Gamma_{\mathsf{B},\overline{\mathsf{B}}}(\mathsf{t}) = \mathcal{B}_{0}e^{-\Gamma t}[\cosh(\frac{\Delta\Gamma}{2}t) - \mathbf{A}^{\mathbf{A}} \sinh(\frac{\Delta\Gamma}{2}t) \pm \mathbf{C}\cos(\Delta m \ t) + \mathbf{S}\sin(\Delta m \ t)]$$
Only accessible for B_s decays
$$\Delta\Gamma_{\mathsf{d}} \sim 0$$


$$\Delta\Gamma_{\mathsf{s}} \sim 0.081 \pm 0.011 \ \mathsf{ps}^{-1}$$
Need to tag the flavour of the initial B_(s)

$$\frac{2 \operatorname{Re}[\frac{q}{p}(\bar{\mathcal{A}}_{L}\mathcal{A}_{L}^{*} + \bar{\mathcal{A}}_{R}\mathcal{A}_{R}^{*})]}{|\mathcal{A}_{L}|^{2} + |\bar{\mathcal{A}}_{L}|^{2} + |\bar{\mathcal{A}}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2}}$$

$$\frac{\left(|\mathcal{A}_{L}|^{2} + |\mathcal{A}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2}\right)}{|\mathcal{A}_{L}|^{2} + |\bar{\mathcal{A}}_{L}|^{2} + |\bar{\mathcal{A}}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2}}$$

$$\frac{\left(|\mathcal{A}_{L}|^{2} + |\mathcal{A}_{R}|^{2} - (|\bar{\mathcal{A}}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2})\right)}{|\mathcal{A}_{L}|^{2} + |\bar{\mathcal{A}}_{R}|^{2} + |\bar{\mathcal{A}}_{R}|^{2}}$$

• At present only information from *S* and *C* parameters in the B_d system

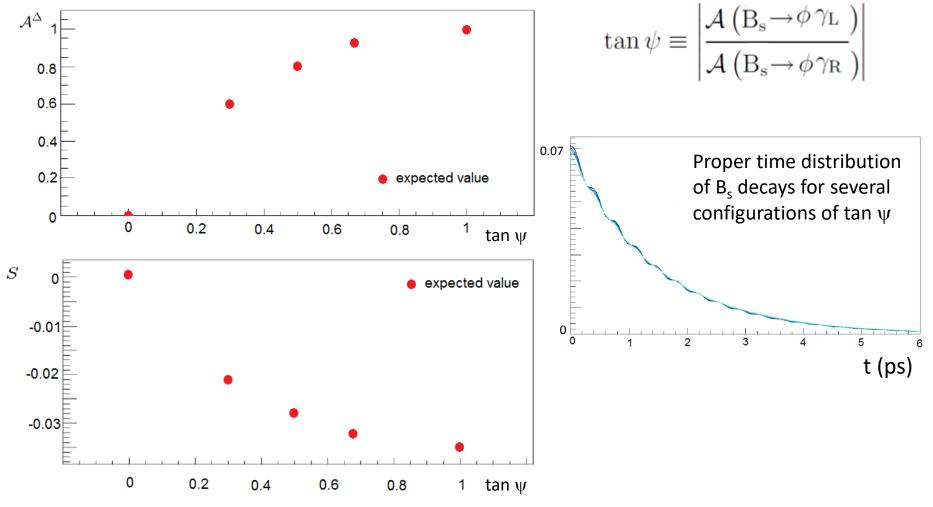
 \rightarrow Results in agreement with the SM predictions

• The time dependent decay rate for a $B_{(s)} \rightarrow V\gamma$ a and $\overline{B}_{(s)} \rightarrow V\gamma$:

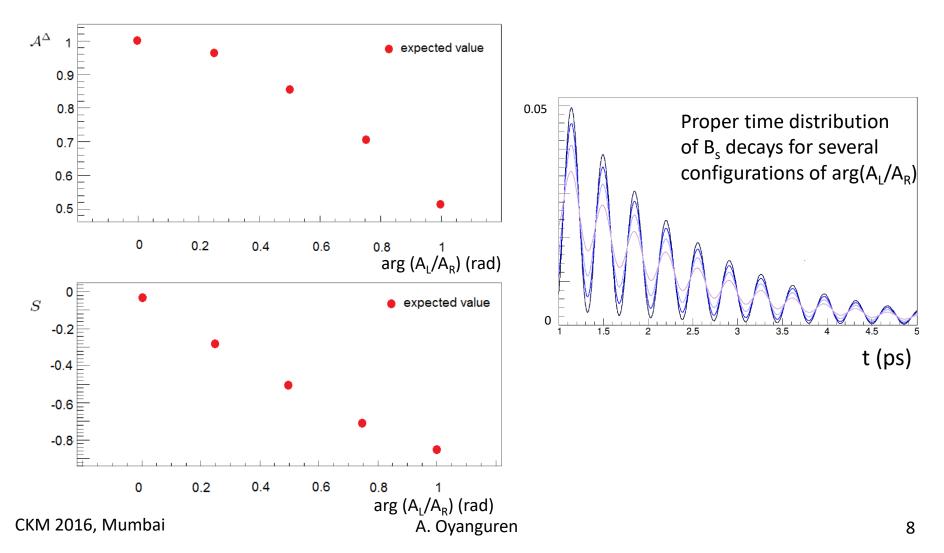
$$\Gamma_{\mathbf{B},\overline{\mathbf{B}}}(\mathbf{t}) = \mathcal{B}_0 e^{-\Gamma t} \left[\cosh(\frac{\Delta\Gamma}{2} t) - \mathbf{A}^{\mathbf{A}} \sinh(\frac{\Delta\Gamma}{2} t) \pm \mathbf{C} \cos(\Delta m \ t) + \mathbf{S} \sin(\Delta m \ t) \right]$$

→ For the $B_s \rightarrow \phi \gamma$ decay channel the SM predictions are: [Muheim, Xie, Zwicky, PLB664(2008)174]

$$\mathbf{A}^{\mathbf{A}}_{\mathsf{SM}} = 0.047 \pm 0.025 + 0.015_{O(\alpha_s)} \qquad \mathbf{S}_{\mathsf{SM}} = 0 \pm 0.002$$


 \rightarrow Left-Right Symmetric models: A^{Δ} up to ~ 0.7

[Atwood, Gronau, Soni PRL79(1997)185]


 \rightarrow Fraction of anomalous polarized photons ~ 40%

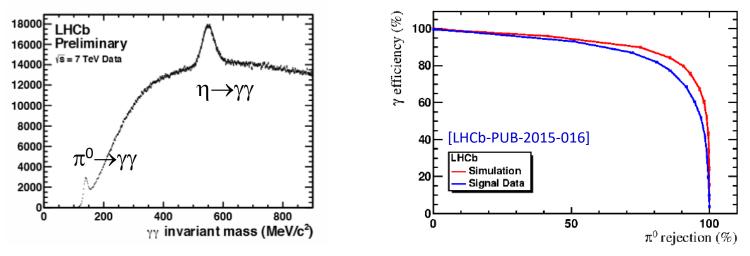
A. Oyanguren

 \bullet Dependence of A^{Δ} and S parameters with the fraction of anomalous polarized photons

 \bullet Dependence of A^{Δ} and S parameters with the relative phase of anomalous polarized photons (assuming 50% of A_L)

Radiative decays at LHCb

A difficult task in pp collisions:

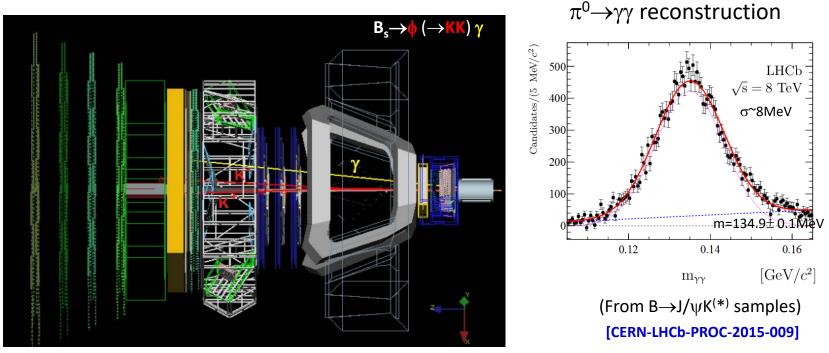

- Huge amount of combinatorial photons in the calorimeter: ~ 10 γ 's/event
- Large calorimeter occupancy, large background

 \rightarrow Use neutral PID to separate neutral EM shower from hadronic and electron deposits.

• High energy photons ($p_T > 2.5 \text{GeV}$) from $\pi^0 \rightarrow \gamma \gamma$ merge in the same calorimeter cells.

 \rightarrow Special multivariate tool for separation using info from shower shapes

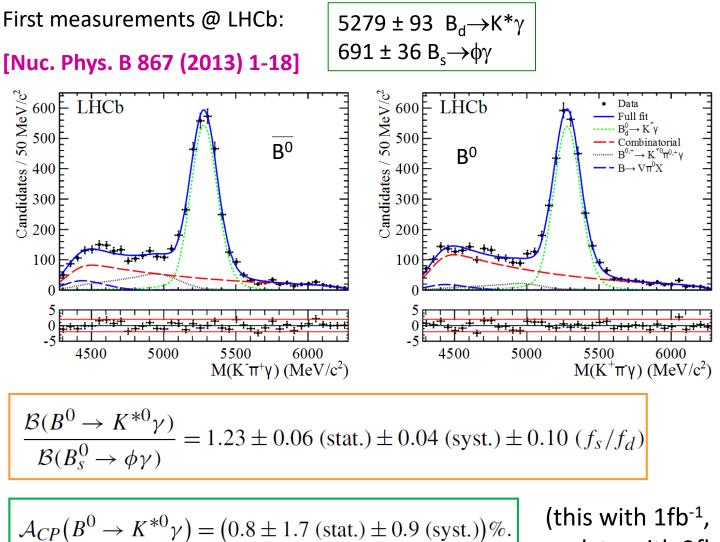
- Photons give low constraints in radiative B decays
 - \rightarrow No origin vertex, decay info limited by the ECAL resolution



CKM 2016, Mumbai

A. Oyanguren

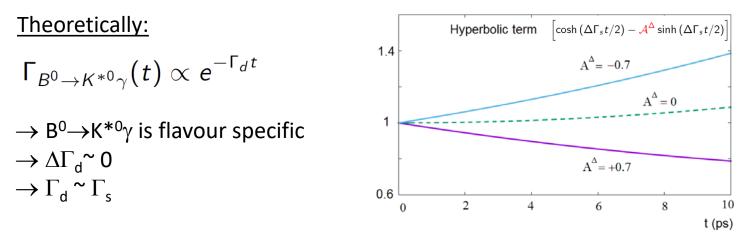
Radiative decays at LHCb


Photon reconstruction @ LHCb

• Calorimetric photons: converted to a e^+e^- pair after the magnet or unconverted \rightarrow High energy photons from B decays: B mass resolution σ^{2} MeV/c²

- Converted photons: $\gamma \rightarrow e^+e^-$ materialization
 - \rightarrow Small fraction ~ 20%
 - \rightarrow Better B mass resolution, $\sigma^{\sim}30~\text{MeV/c}^2$

Radiative decays at LHCb



(this with 1fb⁻¹, update with 3fb⁻¹ soon)

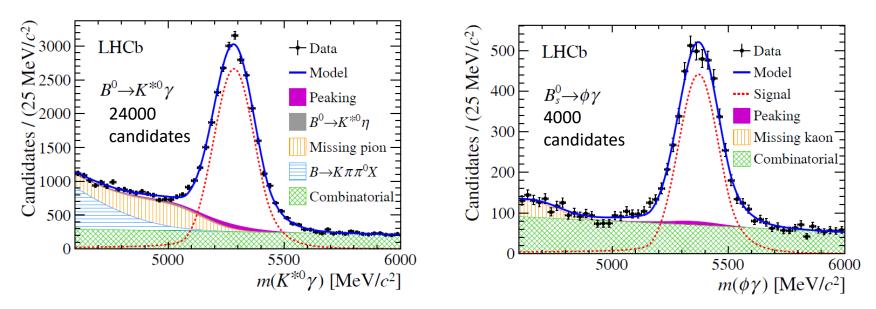
<u>Time dependent analysis of $B_s \rightarrow \phi \gamma$ </u>

- Untagged analysis $\rightarrow C$ and S terms cancel, access to the A^{Δ} parameter $\Gamma_{B^0_s \rightarrow \phi \gamma}(t) \propto e^{-\Gamma_s t} \left[\cosh\left(\Delta \Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta \Gamma_s t/2\right) \right]$
- Use $B^0 \rightarrow K^* \gamma$ (with $K^{*0} \rightarrow K^+ \pi^-$) as control channel of $B_s \rightarrow \phi \gamma$ (with $\phi \rightarrow K^+ K^-$)

Experimentally: Similar topology: similar trigger, reconstruction and selection \rightarrow a high-energy photon and two tracks of opposite sign (K⁺K⁻/ π^-)

Not affected by new physics: Key to control the experimental effects

CKM 2016, Mumbai


A. Oyanguren

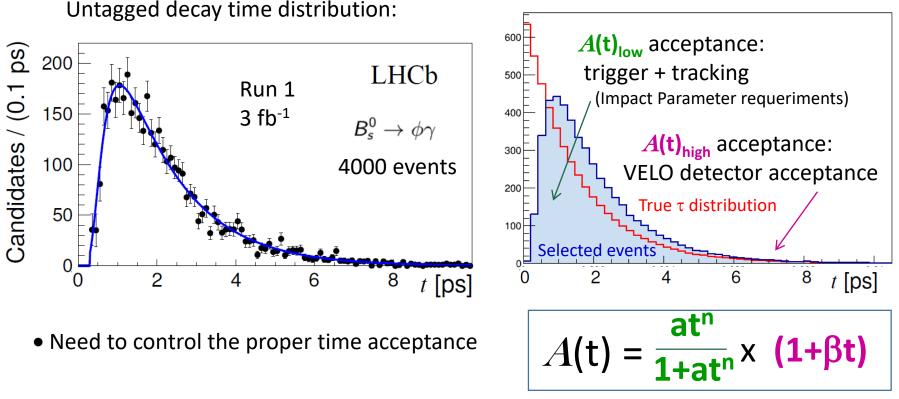
h⁺

h-

<u>Time dependent analysis of $B_s \rightarrow \phi \gamma$ </u>

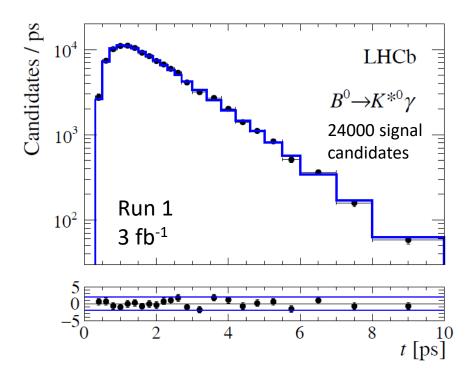
• Background subtraction from mass fit (*sFit* technique):

<u>Signal model</u>: modified Crystal Ball, with tails in both sides of the peak <u>Background model</u>:


- Combinatorial (~15%)*: First-order polynomial
- Partially reconstructed (~5% for $K^*\gamma$)*: ARGUS convolved with a Gaussian
- Peaking (~2%)* included in the signal, contribution corrected afterwards

(* In the signal region)

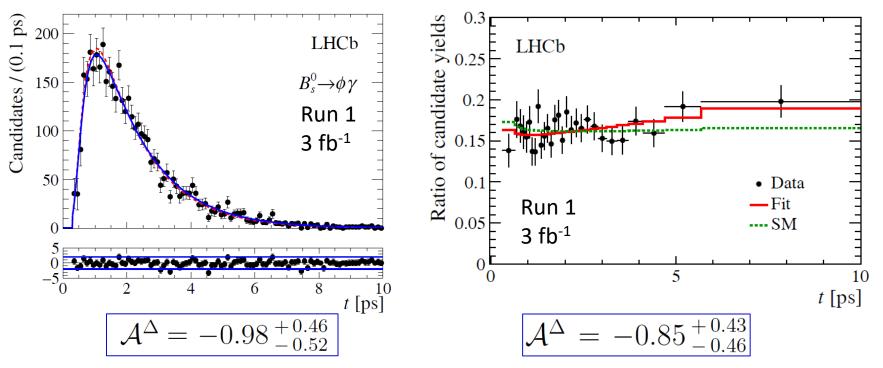
<u>Time dependent analysis of $B_s \rightarrow \phi \gamma$ </u>


• The decay time is measured from the B momentum and flight distance, after a full kinematical fit of the decay channel

 $\Gamma_{Bs}(t_r)$ measured = $A(t) \cdot \Gamma_{Bs}(t; A^{\Delta}) \otimes R(t, t_r)$

• Effect of proper time resolution negligible (σ_t ~ 60-100 fs)

• Acceptance constrained from simulation after validating with the $B \rightarrow K^* \gamma$ sample:


$${\sf \Gamma}_{B^0 o {\cal K}^{st 0} \gamma}(t) \propto e^{-{\sf \Gamma}_d t}$$

Result of the fit: $au_{B^0} = 1.524 \pm 0.013_{
m stat} \ {
m ps}$

Compatible with PDG: $au_{B^0} = 1.520 \pm 0.004 \, \mathrm{ps}$

(Checked also a null test if we consider an unphysical A^{Δ} term)

- Fit procedure: blinded unbinned simultaneous fit to $B_s \rightarrow \phi \gamma$ and $B \rightarrow K^* \gamma$ samples
- Alternatively, a blinded binned fit to the $B_s \rightarrow \phi \gamma / B \rightarrow K^* \gamma$ ratio

- Compatible results, verified with toy simulations
- Same sensitivity considering the $\sigma_{\text{A}^{\Delta}}$ correlation with the value of A^{Δ}
- Statistical uncertainty includes uncertainties from external parameters ($\Delta\Gamma_s$, Γ_s)

Hyperbolic term

 $A^{\Delta} = -0.7$

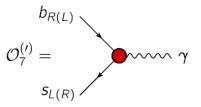
 $A^{\Delta} = +0.7$

 $A^{\Delta} = 0$

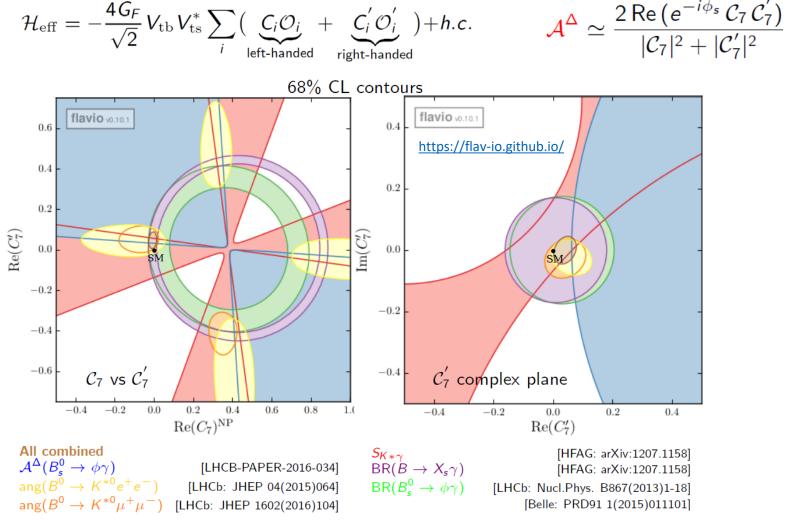
t (ps)

1.4

0.6

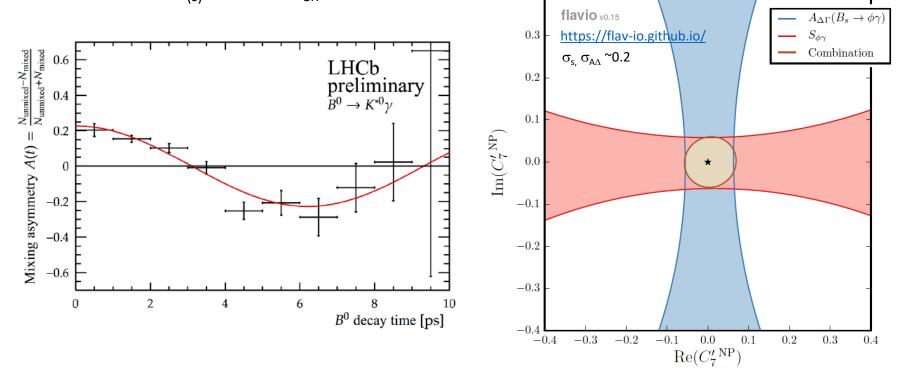

• Use as nominal the unbinned fit (suitable for a next tagged analysis)

 $\mathcal{A}^{\Delta} = -0.98^{\,+\,0.46}_{\,-\,0.52}$


• Systematic uncertainties:

Source	+σ(A ^Δ)	-σ(A∆)
Correlations mass vs decay time in bkg	0.15	0.15
Peaking backgrounds	0.02	0.05
Mass modelling: signal	0.03	0.03
Mass modelling: combinatorial	0.07	0.07
Mass modelling: partial bkg	0.10	0.10
Acceptance function (from simulation)	0.13	0.05
Resolution function	0.01	0.01
Total	+ 0.23	- 0.20

 \rightarrow expected to be reduced with Run 2 data


• In terms of the Wilson coefficients C₇ and C₇':

Prospects

- Add Run2, and use events with flavour tagging information
- Good performance of flavour tagging for radiative $B_{(s)}$ decays ($\epsilon_{eff} > 5\%$)

0.4

Important constraints on new physics when including the S parameter!

Conclusions

- First time dependent analysis of a radiative B_s decay, using LHCb data [LHCb-PAPER-2016-034, arXiv:1609.02032v1, submitted to PRL]
- Measurement of the A^{Δ} parameter:

 $\mathcal{A}^{\Delta} = -0.98^{+0.46}_{-0.52}{}^{+0.23}_{-0.20}$

- Compatible within 2 σ with the SM predictions: $\mathcal{A}_{SM}^{\Delta} = 0.047 \, {}^{+0.029}_{-0.025}$
- Statistically limited, uncertainty will be reduced quite soon adding Run 2 data
- Info from flavour tagging will be added to extract the S and C CPV parameters

Thanks!