Pion/Kaon Decay in Very Special Relativity

Pankaj Jain IIT Kanpur

Very Special Relativity (VSR)

- The speed of light is a universal constant, same in all frames of reference
- This does not really imply that the fundamental symmetry group is the Lorentz group
- It only leads to a subgroup, which may be HOM(2), SIM(2) (Cohen and Glashow 2006)

SIM(2)

• SIM(2): T₁, T₂, J_z, K_z $T_1 = K_x - J_y, T_2 = K_y + J_x$ J: rotations K: boosts $[T_1, T_2] = 0, \qquad [J_2, K_2] = 0$ $[J_{7}, T_{1}] = iT_{2}$, $[J_{7}, T_{2}] = -iT_{1}$ $[K_{7}, T_{1}] = iT_{1}$, $[K_{7}, T_{2}] = iT_{2}$

Translations are preserved in VSR

Transformation to rest frame

- We can make a HOM(2) (T₁, T₂, K_z) transformation to the rest frame of a particle
- Several consequences of Lorentz invariance, such as,

Law of velocity addition time dilation universal maximal velocity

remain preserved

Relationship with P, T, CP (CT)

- VSR is possible as long as P, T, CP (or CT) are all violated
- If any one of these discrete symmetries are imposed we get back the full Lorentz group

Dispersion Relations

- Particle Dispersion relations do not get modified E² = P² + M²
- This is in contrast to other models of Lorentz violation, perhaps arising from quantum gravity effects
- Hence many constraints based on such effects do not apply

Effective Lagrangian approach to VSR

- We assume that Lorentz violating effects are small
- We can express these in terms of effective interactions, added to the Standard Model

VSR Effective Lagrangian

$$L = \overline{\psi}_L \left(i D_\mu \gamma^\mu - m + i m_1^2 \frac{n_\mu \gamma^\mu}{n \cdot D} \right) \psi_L + (L \to R)$$

 $n^{\mu} = (1,0,0,1)$; D = gauge covariant derivative

This is invariant under VSR transformations. Either n^{μ} does not change or the change cancels out

The term is non-local. This appears to be necessary

Leads to mass of fermions as well as interactions with gauge bosons

VSR Effective Lagrangian

• Similar VSR terms are also present in gauge and scalar sector

Cohen and Glashow 2006 Dunn and Mehen 2006 Alfaro et al 2015

VSR Mass term

The nonlocal term provides a mass term for neutrinos.

All fermions get a correction term to mass

On-shell: $P^2 = m^2 + m_1^2$

VSR Mass term

Also leads to different masses for left and right handed particles.

Stringent limits on such left-right mass difference for electron.

We impose C invariance to eliminate this mass difference.

Requires fine tuning

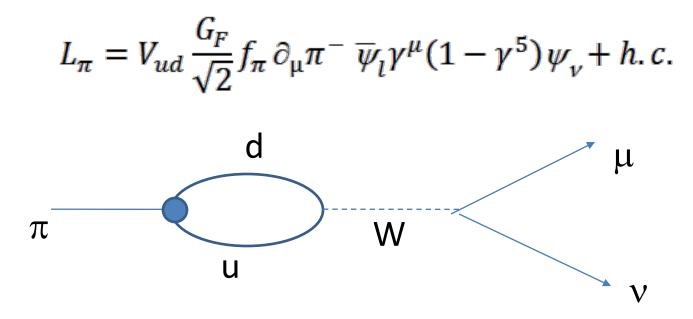
Dunn and Mehen 2006 Fan, Goldberger, Skiba 2006

Pion/Kaon Decay

- We consider charged pion/kaon decay within VSR in order to study this phenomena
- Similar effects are expected in all processes

Pion Decay

The hadronic current is proportional to q^{μ} , the pion momentum



Leads to standard decay rate

Lorentz Violating VSR term

In VSR the hadronic current can also have an additional piece proportional to n^{μ}

$$L_{VSR} = g \left(\frac{n_{\mu}}{n \cdot \partial} \pi^{-}\right) \overline{\psi}_{l} \gamma^{\mu} (1 - \gamma^{5}) \psi_{\nu} + \text{h.c.}$$

Such an effective term arises if we assume a VSR quark mass term

Decay Amplitude

 The dominant contribution comes from the interference between the VSR and the standard term

$$iM = \dots + g \, \frac{n_{\mu}}{n \cdot q} \, \overline{u}(p) \gamma^{\mu} (1 - \gamma^5) v(k)$$

q= pion momentum

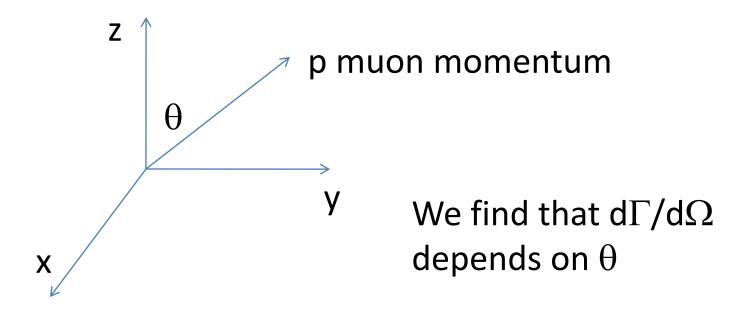
- p = muon momentum
- k = neutrino momentum

Pion Decay in rest frame

- We cannot make a Lorentz transformation in order to go to the rest frame of pion
- However we do this by making a HOM(2) transformation
- Under this transformation n^μ changes by overall constant which cancels out in the amplitude

Pion Decay in rest frame

 We choose a frame such that n^μ = (1,0,0,1) up to an irrelevant constant



Limit on g

• We first impose a limit on g by demanding that the correction due to VSR is smaller than the error in the total decay rate

•
$$g < g_0, g_0 = 2.1 \times 10^{-12} \text{ GeV}$$

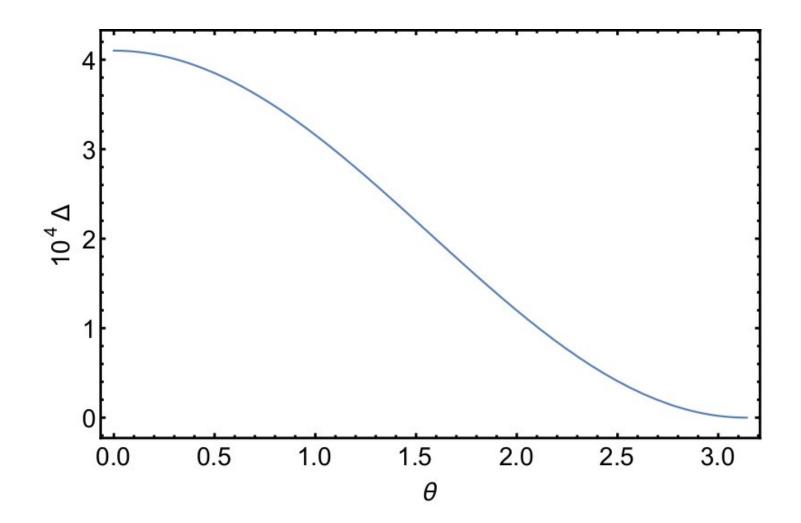
Anisotropic muon distribution

• The final state muon distribution is not isotropic, depends on $\boldsymbol{\theta}$

$$\Delta = \frac{\frac{d\Gamma}{d\Omega}(g \neq 0) - \frac{d\Gamma}{d\Omega}(g = 0)}{\frac{d\Gamma}{d\Omega}(g = 0)}$$

$$\Delta = \frac{2\sqrt{2} g}{f_{\pi} m_{\pi}^2 G_f |V_{ud}|} (1 + \cos \theta)$$

Anisotropic muon distribution



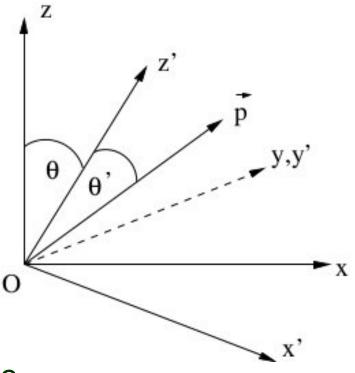
Pion decay in laboratory frame

 We consider a beam of pions moving along z' axis with momentum q

```
xyz, frame S: In this frame n^{\mu} = (1,0,0,1)
```

```
x'y'z', frame S': standard
lab frame
```

Use rotational invariance about z to align x' in x-z plane



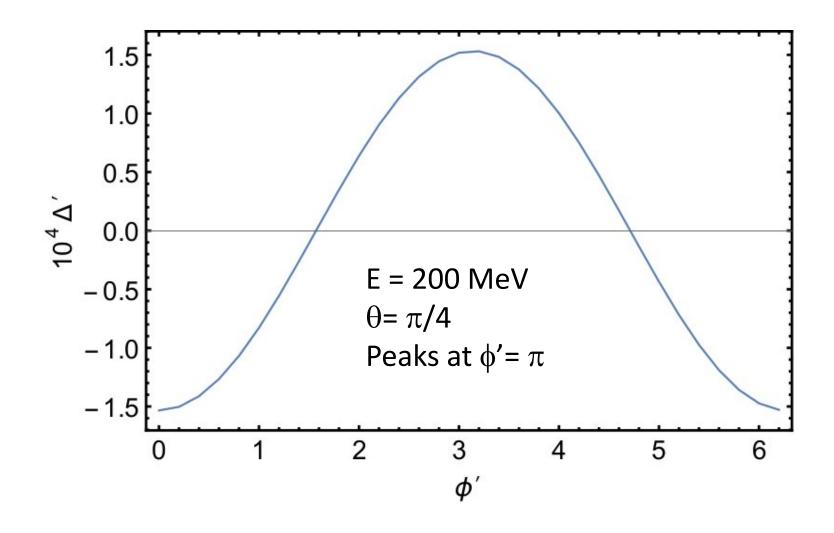
Azimuthal dependence In lab frame

- Final state muon distribution picks up an azimuthal φ' dependence in lab frame
- Define

$$\Delta' = \frac{(d\Gamma/d\phi') - \Gamma_{avg}}{\Gamma_{avg}}$$

$$\Gamma_{avg} = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\Gamma}{d\phi'} \, d\phi'$$

Azimuthal dependence

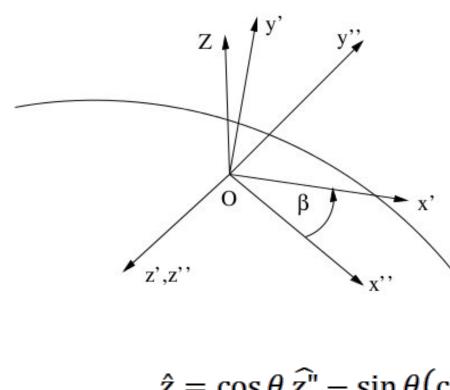


Daily Variation

- The angle θ between preferred axis and beam changes with time due to Earth's rotation
- \Rightarrow periodic variation of d Γ /d Ω with a time period of 1 sidereal day
- Sidereal day is a day relative to fixed stars rather than the Sun. It is a little shorter than solar day

Coordinates

Assume observer at latitude $\boldsymbol{\lambda}$



z', z'' : Beam axis x"y"z": Lab coordinates y" = local normal

x'y'z': also lab coordinates with x' in z-z' plane

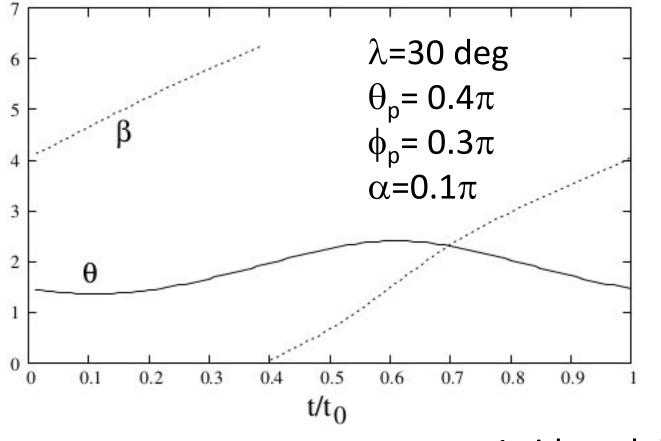
Z = rotation axis z= preferred axis

 $\hat{z} = \cos\theta \, \widehat{z''} - \sin\theta \left(\cos\beta \widehat{x''} + \sin\beta \widehat{y''}\right)$

Daily Variation

- Due to change in θ the magnitude of $d\Gamma/d\Omega$ will change periodically with time
- Due to change in orientation of the beam relative to preferred axis, the peak position in the azimuthal distribution would also show a correlated change with time

Time dependence of θ and β



 $t_0 = 1$ sidereal day

Experimental Proposal

- We propose to test the angular dependences and daily variation experimentally
- These will arise in many processes, both involving decay as well as collision

Experimental Proposal

- We divide a sidereal day into several bins
- For each time bin, divide data into bins in azimuthal angle
- Collect data in each bin over many days
- Determine the azimuthal dependence of final state particles for each time bin
- The peak position should show time dependence with a period of 1 sidereal day
- Correlated with this the amplitude should also vary with the same period

Experimental Proposal

 Furthermore polar angle dependence should also time dependence with a period of a sidereal day

Conclusions

- VSR is an interesting theoretical proposal
- Here we have shown that it leads to time and azimuthal angle dependence of final state particles which can be tested experimentally

Collaborators

- Alekha Nayak
- And earlier: Ravindra Verma
- Subhadip Mitra

Azimuthal distribution

- In x'y'z' system the peak in φ' distribution occurs at π
- the lab x"y"z" is related to x'y'z' system by a rotation $-\beta$ about the common z', z" axis
- Hence the peak in this system occurs at $\phi'' = \pi \beta$
- We need the time dependence of θ and β

Time dependence of θ and β

- We use the astronomical equatorial coordinate system XYZ
- Relate the preferred coordinates xyz to XYZ, assume preferred axis at θ_p , ϕ_p
- Also relate lab coordinates x"y"z" to XYZ. This gives us the variation of lab coordinates with time
- Hence we can find time dependence of θ and β