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Axions



Strong CP problem

Most general SU(3) symmetric Lagrangian

L=Lgcp+06- GG
0 could be the source of P, CP violation.

It isn’t. From nEDM experiments — 6 < 10~1°

Why?



0 dependence of QCD

Calculate the Feynman path integral!

2(6) = |14 ickp] exp (lj d*x (Lgep + eGé))

Has a minimum at 6 = 0!
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o=/ GG topological charge, x = <QZT> top. susceptibility



A solution by Peccei-Quinn '77

Turn the parameter into

a dynamical field!

figs/thetapot/plot.gif
Locp +6 -GG + 12 - (2,0)% + V(8,9,6)
with V(6,0,0) such, that minimum stays at 6 = 0.

PQ: Spontaneously broken global U(1)pg at scale fg.
0= Goldstone mode. Only derivative couplings V = V(00).

— axion pseudo-Goldstone m2 = x/f2 [Weinberg,Wilczek]



The QCD axion [Weinberg,Wilczek]

Pseudo-Goldstone boson with ‘mass m2 = x/f2

Couplings? Model dependent.

Introduce a U(1)pg field ¢ in Mexican-hat plus

— heavy quark Q [KSvz] — two Higgs H,,, Hy [DFSZ]

----- RN Smaller mass more elusive



The axion mass window
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Can’t be too large — would have “seen” it, since coupling ~ my
[HAYSTAC '16]
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Can’t be too small — too much of them . ..



Axions from early Universe [Preskill,Wilczek,Wise, ... '83]

Potential becomes flat at QCD transition (T, ~ 150MeV)
T>>T, T=1.5T; ‘ T<T,

R

>

Axion field equation in expanding Universe:

% +3H(T)%) +X(T)/f2sin® =0

PQ breaking at T ~ f, > 10!!GeV then decoupling — initial
angle 0p. As universe cools H-friction decreases, potential
increases, axion rolls down and starts oscillating.

Acts as (cold) dark matter!



Constraining m, from dark matter

Number of axions Qg,(my): smaller m, gives larger Q.
Qq < Opy lower bound on my.
Assuming all DM is axion — prediction for m,.
We need:

1. Axion potential x(T)

2. Hubble rate H(T) — equation of state e(T), p(T)



Instantons from the lattice



Topological susceptibility at T > O

x(T) = @ ~ fraction of gauge field configurations with
non-trivial topology (Q)

N

Strong suppression for high temperatures:
1. path integral weight exp(—Sg/g?) with g(T) — 0O
2. fermion index theorem det(D + m) ~ m!9!

T=15T, T>>T,

Signal is small — challenges:

large statistical error and large lattice artefacts



Xx(T) from standard approach
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Simulate for centuries to get the first Q > O configuration!



x(T) from fixed @ integral

Determine slope instead of susceptibility:
see also in [Frison et al *16]
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finally perform an integral x(T) =— [ dlogT b(T)



Topological susceptibility

wlfm™]
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Exponent consistent with Dilute Instanton Gas
Approximation (—8), prefactor is 5x larger.



xlfm™]

DIGA [Gross,Pisarski,Yaffe '81]
J(0) = Xlloop(T) (1 —cos0)

n=3+1 flavor ("three flavor symmetric point")

| direct mmmm
integral g

‘ DIGA =

200 500 1000 2000
T[MeV]



Ideal gas approximation

independent objects carrying +1 topological charge —

J(0) =x(T) - (1 —cos6)

seems valid above T 2 T,

probability

eg. eV physical point L = 6.6 fm:
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Difficult continuum extrapolation
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Non-chiral fermions have no exact fermion zero modes

det(D+ m) ~ (m+ Ag)!9! with A¢ # O on the lattice

— Too large x, too small slope!



Continuum instanton and zero mode



Lattice instanton and zero
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Continuum extrapolation
Doing full simulation with |chiral fermions is too expensive.
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1. Simulate at large mass (30 - mﬁgys), continuum
extrapolation behaves much better.

2. Calculate difference to m”"Y° by 'integrating in m using

fermion with exact chiral symmetry.



Map of simulations
» 4-stout staggered ny =3+ 1
» 4-stout staggered with fixed top.
» 4-stout staggered ny =2 + 1+ 1

» dynamical overlap n; =2 + 1 with fixed top.
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Continuum extrapolation at T=300 MeV
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Comparison with others [Bonati et al '16 '18]

Continuum extrapolation at T=430 MeV:
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Comparison with others [Petreczky, Sharma '16]

Xx(T) from HISQ fermions

Use two different definitions for topological charge
(gluonic and fermionic).

Both have sizeable discretization errors but approach the
continuum limit from different directions.
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Comparison with others

[Petreczky, Sharma 16] “the dependence is found to be
consistent with dilute instanton gas approximation”

[Taniguchi et al '17] “a decrease in T which is consistent with the
predicted x(T) oc T8”

[Lombardo et al '18]: “with an exponent close to the one
predicted by the DIGA”
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[Bonati et al "18] “The continuum extrapolation is in agreeement
with previous lattice determinations”



The simplest estimate

Assuming

1. all DM is axion Qpy = Qq4(my)
2. axion field is spatially constant in very large domains

3. there are many domains with random initial value of
the field (6o)

Evolution equations are simple to solve.

— mg = 28(1)peV

Howto improve: take into account spatial dependence
0(X) and take 0 from PQ transition



Axion strings



Axion strings [Vilenkin,Everett]

0o can be undefined = axion string.

What is their effect on axion production? Vastly different
estimates.

Proper way: classical field theory simulation ,

but extreme demanding: f,, H differ by factor 103!



Heavy string simulation [Moore, Klaer '17]

Problem: coarse lattice does not resolve string core —
too small string tension.

Idea: make string cores artifically heavier, while not
changing long distance properties. Attach a local string

to each global string.

Surprise: less axions in the presence of strings.

5 Mg = 26.2(3.4)peV



Lattice QCD has made a good progress in calculating the
necessary inputs for axion cosmology.

Summary
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Several algorithmic developments were necessary.

Still not calculated: axion potential beyond leading order by

Still not well understood: global string dynamics, simulations

with large string tension is already possible

On good way to a solid theory prediction!



Backup



Reweighting

Problem: In continuum weight is m, on the lattice m + Ao[U].

Solution: change weight of configuration by w[U] =

m
m+Ao U]

(w)g must approach 1 in the continuum limit.
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Number of axions
Energy density: eq(t) = 2262 + x(t)(1 — cos )

€a(t)
mq (1)

Number density: ng(t) =

Number density normalized by total entropy density converges
to a constant.
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Axion energy density today:

— _ __ TNatoday ~ ng(t)
Qa = €atoday = Na.today Ma = Stoday Stoday Ma ~ ~(f) Stoday Ma




The lighter the more

Looks paradox, since €g = my - ng

» the lighter, the later it oscillates 3H = m = mg /X

Yelog x + log f

log m

log T

time in the Universe

» later Hubble-dilution is smaller (T3)
» later energy density (x = T~P) is larger

Densities at oscillation (T) and today (0):

— —e_ _x_ _ H _1% — T8 —ng — _1
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_>€0: 1

myT



Lighter mass more axions
Have to solve

2
20 | 3H(T)% +Xf(2 sin® =0

Rolling starts when 3H(T) ~ \/X(T)/fa

Yelog X + log f

log m

log T

time in the Universe



Axion mass and initial angle
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[em ™

log(dp/dp)

Sources of axions

[[rastorza,Redondo ’18]

-10

DM(m, = 10~%eV)

DR;

(T, = 1GeV)

DR (AN = 0.1)

Sun

Betelgeuse

DSAB

T R T B




Continuum instanton and zero mode



Lattice instanton and zero
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Reweighting

Problem: In continuum weight is m, on the lattice m + Ao[U].

Solution: change weight of configuration by w[U] =

m
m+Ao U]

(w)g must approach 1 in the continuum limit.
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phys
mud/mud

Map of simulations
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Continuum extrapolation at T=150 MeV
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Continuum extrapolation at T=300 MeV
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Continuum extrapolation at T=430 MeV

[Bonati et al *18]

S0t e

40} Bonati et al.

lM[MeV]
.5,

Borsanyi et al.

1 | 1 1 1 |
00 0.0005 0001 0.0015 0002 00025 0003 0.0035
2.2
a [fm’]



Contribution from Q = 0, =1

Q=0,1 is enough for T>1.5Tc in quenched
Data from /work/mages/QuenchedSusz/torus-z2-condensed/*/*x6
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Volume dependence illustration

Q distribution depends (extensive quantity)

Charge distribution, Ny=5, T=1.5T, quenched
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Volume (in)dependence at the physical point
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