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1. Axions
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Axions



Strong CP problem

Most general SU (3) symmetric Lagrangian

L = LQCD + θ ·GG̃

θ could be the source of P, CP violation.

It isn’t. From nEDM experiments → θ < 10−10

Why?



θ dependence of QCD

Calculate the Feynman path integral!

Z(θ) =
∫
[dG][dψ†][dψ] exp

(
i
∫

d4x (LQCD + θGG̃)

)
Has a minimum at θ = 0!

-[log Z(θ)/Z(0)]/V

θ≈θ
2
χ/2

Q =
∫

GG̃ topological charge, χ ≡ 〈Q
2〉

V top. susceptibility



A solution by Peccei-Quinn ’77

Turn the parameter into

a dynamical field!

figs/thetapot/plot.gif

LQCD + θ ·GG̃ + 1
2 f 2

a · (∂µθ)2 + V (θ,∂µθ)
with V (θ,∂µθ) such, that minimum stays at θ = 0.

PQ: Spontaneously broken global U (1)PQ at scale fa.
θ= Goldstone mode. Only derivative couplings V = V (∂θ).

→ axion pseudo-Goldstone m2
a = χ/f 2

a [Weinberg,Wilczek]



The QCD axion [Weinberg,Wilczek]

Pseudo-Goldstone boson with mass m2
a = χ/f 2

a

Couplings? Model dependent.

Introduce a U (1)PQ field ϕ in Mexican-hat plus

→ heavy quark Q [KSVZ] → two Higgs Hu, Hd [DFSZ]

� Smaller mass more elusive



The axion mass window
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Can’t be too large → would have “seen” it, since coupling ∼ ma
[HAYSTAC ’16]

Can’t be too small → too much of them . . .



Axions from early Universe [Preskill,Wilczek,Wise, . . . ’83]

Potential becomes flat at QCD transition (Tc ≈ 150MeV)

Axion field equation in expanding Universe:

d2θ
dt2 + 3H(T )dθ

dt + χ(T )/f 2
a sin θ = 0

PQ breaking at T ∼ fa & 1011GeV then decoupling → initial
angle θ0. As universe cools H-friction decreases, potential

increases, axion rolls down and starts oscillating.

Acts as (cold) dark matter!



Constraining ma from dark matter

Number of axions Ωa(ma): smaller ma gives larger Ωa.

Ωa 6 ΩDM lower bound on ma.

Assuming all DM is axion → prediction for ma.

We need:

1. Axion potential χ(T )

2. Hubble rate H(T) → equation of state ε(T ), p(T )



Instantons from the lattice



Topological susceptibility at T > 0

χ(T ) =
〈Q2〉

V ∼ fraction of gauge field configurations with
non-trivial topology (Q)

Strong suppression for high temperatures:
1. path integral weight exp(−SQ/g2) with g(T )→ 0

2. fermion index theorem det(D + m) ∼ m |Q|

Signal is small → challenges:

large statistical error and large lattice artefacts



χ(T ) from standard approach

Simulate for centuries to get the first Q > 0 configuration!



χ(T ) from fixed Q integral

Determine slope instead of susceptibility:
see also in [Frison et al ’16]

−d logχ
d log T = b = 4 + dβ

dT 〈Sg〉1−0 +
∑

f
dmf
dT mf 〈ψψ〉1−0

finally perform an integral χ(T ) = −
∫

d log T b(T )



Topological susceptibility
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Exponent consistent with Dilute Instanton Gas
Approximation (−8), prefactor is 5x larger.



DIGA [Gross,Pisarski,Yaffe ’81]

f (θ) = χ1loop(T ) · (1 − cos θ)
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Ideal gas approximation

independent objects carrying ±1 topological charge →

f (θ) = χ(T ) · (1 − cos θ)

seems valid above T & Tc

eg. T=180 MeV physical point L = 6.6 fm:
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Difficult continuum extrapolation
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T=300 MeV

Non-chiral fermions have no exact fermion zero modes

det(D + m) ∼ (m + λ0)
|Q| with λ0 6= 0 on the lattice

→ Too large χ, too small slope!



Continuum instanton and zero mode



Lattice instanton and zero mode
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Continuum extrapolation
Doing full simulation with chiral fermions is too expensive.
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1. Simulate at large mass (30 ·mphys
ud ), continuum

extrapolation behaves much better.

2. Calculate difference to mphys
ud by integrating in m using

fermion with exact chiral symmetry.



Map of simulations
I 4-stout staggered nf = 3 + 1
I 4-stout staggered with fixed top.
I 4-stout staggered nf = 2 + 1 + 1
I dynamical overlap nf = 2 + 1 with fixed top.
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Continuum extrapolation at T=300 MeV
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Comparison with others [Bonati et al ’16 ’18]

Continuum extrapolation at T=430 MeV:



Comparison with others [Petreczky, Sharma ’16]

χ(T ) from HISQ fermions

Use two different definitions for topological charge
(gluonic and fermionic).

Both have sizeable discretization errors but approach the
continuum limit from different directions.



Comparison with others

[Petreczky, Sharma ’16] “the dependence is found to be
consistent with dilute instanton gas approximation”

[Taniguchi et al ’17] “a decrease in T which is consistent with the
predicted χ(T ) ∝ T−8”

[Lombardo et al ’18]: “with an exponent close to the one
predicted by the DIGA”

[Bonati et al ’18] “The continuum extrapolation is in agreeement
with previous lattice determinations”



The simplest estimate

Assuming

1. all DM is axion ΩDM = Ωa(ma)

2. axion field is spatially constant in very large domains

3. there are many domains with random initial value of
the field (θ0)

Evolution equations are simple to solve.

→ ma = 28(1)µeV

Howto improve: take into account spatial dependence
θ(~x) and take θ0 from PQ transition



Axion strings



Axion strings [Vilenkin,Everett]

θ0 can be undefined ≡ axion string.

What is their effect on axion production? Vastly different
estimates.

Proper way: classical field theory simulation ,

but extreme demanding: fa, H differ by factor 1030!



Heavy string simulation [Moore, Klaer ’17]

Problem: coarse lattice does not resolve string core →
too small string tension.

Idea: make string cores artifically heavier, while not
changing long distance properties. Attach a local string
to each global string.

Surprise: less axions in the presence of strings.

→ ma = 26.2(3.4)µeV



Summary

Lattice QCD has made a good progress in calculating the
necessary inputs for axion cosmology.
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Several algorithmic developments were necessary.

Still not calculated: axion potential beyond leading order b2

Still not well understood: global string dynamics, simulations
with large string tension is already possible

On good way to a solid theory prediction!



Backup



Reweighting

Problem: In continuum weight is m, on the lattice m + λ0[U ].

Solution: change weight of configuration by w[U ] ≡ m
m+λ0[U ]

〈w〉Q must approach 1 in the continuum limit.
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Number of axions
Energy density: εa(t) = 1

2 f 2
a θ̇

2 + χ(t)(1 − cos θ)

Number density: na(t) =
εa(t)
ma(t)

Number density normalized by total entropy density converges
to a constant.
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Axion energy density today:

Ωa ≡ εa,today = na,today ma =
na,today

stoday
stoday ma ≈ na(t)

s(t) stoday ma



The lighter the more

Looks paradox, since ε0 = m0 · n0

I the lighter, the later it oscillates 3H = m = m0
√
χ

I later Hubble-dilution is smaller (T3)

I later energy density (χ = T−b) is larger

Densities at oscillation (T ) and today (0):
ε = χ, n = ε

m = χ
m0
√
χ = H

m2
0
= T2

m2
0

, s = T3, n0 = n
s s0 = 1

m2
0 T

−→ ε0 = 1
m0T



Lighter mass more axions
Have to solve

d2θ
dt2 + 3H(T )dθ

dt +
χ(T)

f 2
a

sin θ = 0

Rolling starts when 3H(T ) ≈
√
χ(T )/fa



Axion mass and initial angle



Sources of axions

[Irastorza,Redondo ’18]



Continuum instanton and zero mode



Lattice instanton and zero mode
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Reweighting

Problem: In continuum weight is m, on the lattice m + λ0[U ].

Solution: change weight of configuration by w[U ] ≡ m
m+λ0[U ]

〈w〉Q must approach 1 in the continuum limit.
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Map of simulations
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Continuum extrapolation at T=150 MeV
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Continuum extrapolation at T=300 MeV
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Continuum extrapolation at T=430 MeV

[Bonati et al ’18]



Contribution from Q = 0,±1
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Volume dependence illustration

Q distribution depends (extensive quantity)
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Volume (in)dependence at the physical point
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