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Recap: role of prior
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Efficiency on b events
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Need to know the fraction of b-jets in my sample, that is the prior p(b-jet).

[Cousins]

Cannot answer.



Frequentist too believe in Bayes theorem
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Application of Bayes’ theorem to random events for which prior information is 
known is the most powerful way of exploiting all the available information.


Knowledge of the probability distribution p(x|m) and the prior probabilities for m 
(prior to the observation of x) is very powerful.  


It allows to use the observation of x to update the prior knowledge and therefore 
determine the posterior probability p(m|x), that is the “backward process” 
probability - which offers all information one might possibly want on m



Once p(m|x) is known, the rest is 
straighforward: 


Point estimate  Mean of p(m|x), which 
minimizes the variance of m. 
Alternatively, value mbest that 
maximizes p(m|x). But it depends on 
metric: differs if parameter is m or any 
function f(m).  


Interval estimate interval (not unique) 
of m values such that 


Bayesian Inference
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Thanks to the prior in one determines p(m|x): the posterior probability density for 
the theory given the data.



What if priors aren’t known or cannot be defined 
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• Frequentist: give up on getting p(m|x). Revert to an estimate based only on data 
and the assumed model, not on prior knowledge.  


• Bayesian: stick to Bayes’ theorem by assuming a prior


Both options are though businesses, as priors do carry information. E.g, the 
posterior p(m0|x) is zero for any value m=m0 for which p(m0)=0 regardless of what 
are the observed data 


Because HEP folks expect objective/repeatable results that are free from 
subjective input and can be interpreted in terms of coverage (more later), many 
Bayesian analyses make an effort toward using priors that have minimal influence 
on the result.



Flat priors
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Uniform (“flat”) priors are commonplace in HEP papers. “Knowing nothing about 
a parameter, I assign equal probabilities to all its possible values” (the 
noninformative argument)


Sounds intuitively plausible and has attractive practical features: it’s easy and 
the parameter value that maximizes the posterior density is the same that 
maximizes the likelihood. 


However, flat priors have serious issues: (i) cannot be normalized without a 
cutoff (ii) puts most of belief at infinity (iii) the noninformative argument is ill-
defined, as any pdf can be transformed into a flat pdf and you’ll get a different 
answer if the prior is flat in m, 1/m, log(m) etc..                                                          
All of this exacerbates with increasing dimensionality of the space of parameters


Lot of thinking (Jeffrey’s most notably) went into pursuing priors containing “as 
little information as possible”, so that the posterior is dominated by the data.  



A better approach -  assessing sensitivity to priors
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Convincing support of Bayesian results 
is typically achieved through analysis’ 
sensitivity studies. 


Investigate the sensitivity of one’s 
analysis on prior choices by, e.g., 
looking at the median expected results 
in simulated events, repeat the analysis 
with various choices for priors, or on 
smaller subsets of the sample.
 Example from PRD 85, 072002 (2011)

Sensitivity analysis provides essential information on how much of the final result 
p(m|x) is driven by data (p(x|m)) and how much by the prior p(m) and is therefore a 
very desirable “calibration” of any Bayesian result. 



Inferring from data 

The likelihood

8[Cousins]



The likelihood
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Likelihood function
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Model p(x|m) evaluated at fixed data. Essential in any inference 


• probability density function p(x|m) of observing generic data x, given the 
unobservable value of the parameter m.


• Then take actual sample of observed data x0  and evaluate p(x0|m)


• The likelihood L(m) = p(x0|m) is a function of parameter m given your data 


Connected to probability for observing data x for different choices of the value 
of the parameter m, not the probability that m has some value given the data. 


Likelihood is a complete summary of the data information relevant to the 
estimate at hand. Ideally should be published as is.



A likelihood is not a pdf
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The probability density function p(x|m) is a parametric function of the observable 
data x. 


The likelihood function L(m) is a function of the unobservable parameter m.

Z

X
p(x|m)dx = 1

Z

M
p(x0|m)dm =?

The pdf, a probability density of the data 
(random variable), should be normalized to unity 
over the domain of the random variable.


The likelihood, a function of the parameter m, 
obeys no specific normalization.

In addition, the function values L(m) are invariant under reparametrization of m into 
f(m): L(m) = L[f(m)]. No Jacobians here, reinforcing the notion that L(m) is not a pdf 
for m.



Maximum of the likelihood 
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The likelihood expresses the probability of observing the data you observed as a 
function of the parameter value m.


Given some data, parameter values mlow  that make L(m) small are disfavored: it 
would be unlikely for nature to generate that set of observed data, had the true value 
of m been mlow. Conversely, values mhigh that make L(m) large are favored


HEP usually deals with repeated observations x that are independent and identically 
distributed.  If the likelihood for a single observation x’ is 


                             L(m) = p(x’|m), 


the likelihood for the whole experiment is the product of the single-event likelihoods


                            L(m) = Π p(x|m)



Example — exponential
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Decay process. Assume exponential model. Pdf 


Then we observe N decay times and infer the lifetime by maximizing the likelihood.


p(t|⌧) = 1
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Example - exponential (cont’d) 
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As high values of the likelihood are associated with favored values of the 
unknown parameter (lifetime tau here), set to zero derivative


dL(⌧)
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dL(⌧)/d⌧ = 0 implies ⌧̂ =
NX

k=1

tk/N
tau corresponding to the average of 

observed decay times maximizes 
the likelihood

Had I framed my inference in terms of natural width,  Γ = 1/τ


Because L is invariant under parameter transform, its maximum too is so.
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Probability mass function


(Discrete) function of data


Example — Poisson
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Model: Poisson-distributed signal, no background.


Observe j = 5. What’s the maximum likelihood estimate for my Poisson mean?

p(j|µ) = µj

j!
e�µ = L(µ) L(µ|j = 5) =

µ5

5!
e�µ

Likelihood


(Continuous) function of physics par.


p(j|µ) = µj

j!
e�µ = L(µ)

Minimize -ln L.
 � d

dµ
lnL(µ)|µ̂ = 0 � d

dµ
(µ� j lnµ+ ln j!) = 1� j

µ

Given observation j, the ML estimator of the mean rate of success μ is μ̂ = j  



Illustrated
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j = 5

j

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger][N. Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger][N. Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger][N. Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5
µ = 20

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger][N. Berger]



Poisson illustrated
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j = 5
µ = 0.5

j

µ = 5

µ = 20

µ j = 5

Model: Poisson-distributed signal, no background.


Observe j = 5.

[Berger][N. Berger]



Extended likelihood
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Sometimes the number of events of the sample N is itself part of the inference, 
e.g., measure a production cross sections. 


The result of the experiment is N, x⃗₁, x⃗₂….x⃗N, it is convenient to use the extended 
likelihood, where addition of a Poisson term (due to total event count) properly 
accounts for the fluctuations on N


Besides the uncertainties in the proportions of each class of events in the 
sample, the Poisson term accounts for the global fluctuation on N

L(⌫,m) =
⌫N

N !
e�⌫

NY

i=1

p(xi;m)



Estimators
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Estimator — a function of the data e(x) used to provide an estimate (“a 
measurement”) of a parameter.

Estimators are functions of data 
(random variables), hence 
estimators are random variables 
with their own probability 
distributions.  An estimator’s 
performance depend on the 
properties of its distribution.

The maximum likelihood estimator is optimally suited for most HEP applications and 
we won’t discuss other estimators.

[James]

m0 m0

m0m0

The maximum likelihood is an estimator.
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Information on a parameter brought by data
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(If it exist) the Fisher information of an observation x on the parameter m, 
related by the likelihood p(xIm) = Lx(m) is

Ix(m) = E

"✓
@ log(Lx(m))

@m

◆2
#

[Ix(m)]ij = E


@ log(Lx(m))
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@ log(Lx(m))

@mj

�

If (i) the possible values of x do not depend on m and (ii) the likelihood is 
twice differentiable and derivatives in m and integrals in x commute

[Ix(m)]ij = �E


@2 log(Lx(m))

@mimj

�

As for N observations the Fisher information is proportional to N, the precision of 
cannot improve faster than 1/sqrt(N)

1 parameter many parameters

See Eq 28 in https://arxiv.org/pdf/1007.1727.pdf for a convenient approximation of the Fisher’s information 

https://arxiv.org/pdf/1007.1727.pdf
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Minimum variance bound
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An attractive property of an estimator is its precision (variance). Can it be made 
arbitrarily small at given number of observations N?


No.


where m̂ estimator of m, b = E[m̂] - m is its bias and Ix(m) is the Fisher information 


If inequalities become equalities, m̂ reaches minimum variance: efficient estimator. 
Implies that once m̂ is known, no further information is brought by complete 
knowledge of all data x. 


Under weak conditions, the maximum likelihood estimator is asymptotically (N-> ∞) 
consistent, efficient, and normal (i.e., has Gaussian uncertainties). 


NB: does not apply if the range of the observations or the dimensionality of the 
likelihood depend on the parameter being estimated.

Var(m̂) = E[(m̂� E[m̂])2] � (1 + db/dm)2

Im̂(m)
� (1 + db/dm)2

Ix(m)

See Eq 28 in https://arxiv.org/pdf/1007.1727.pdf for a convenient approximation of the Fisher’s information 

https://arxiv.org/pdf/1007.1727.pdf


Maximum likelihood variance (“fit error”)
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The minimum variance bound offers an approximated estimate of the variance as 
the curvature (2nd derivative) of the log-likelihood at its maximum. 

[Ix(m)]ij = �E


@2 log(Lx(m))

@mimj

�

V̂ (m̂) ⇡ �1/E


@2 lnL
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⇡ �
✓
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@m2

◆�1 ���
m=m̂

This is the symmetric uncertainty MINUITS computes after MIGRAD/HESSE 
Accurate only for linear problems (Gaussian likelihood).


No guarantee that for N finite the estimator has reached minimum variance. The 
number of observations needed to approximate asymptotic regime depend on 
the proiblemat hand. If in doubt check with toys.



Statistical uncertainty
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Repeating our experiment many times, 68.3% 
of the resulting [m̂-σ, m̂+σ] intervals include the 
true value of the parameter


This differs from stating “in 68.3% of the 
experiments the true value is the  [m̂-σ, m̂+σ] 
range” or “there is 68.3% probability that the 
true value is in the [m̂-σ, m̂+σ] range”


Language is subtle and important. The true 
value is not random. Cannot move around or 
have a probability. 


Only data, that is the interval extremes, are 
random and fluctuate around the true value.

95.5% confidence intervals 
resulting from 20 identical 
measurements of a true 

value of 2.0

m



Coverage
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The capability for an inference procedure to yield uncertainties that cover the true 
value with the stated confidence level is a fundamental requirement in frequentist 
inference.


It is also generally desired/expected  in HEP (even in Bayesian measurements). 


Coverage is a feature of the procedure used, not of a single measurement.                
The single interval resulting from a specific measurement may contain or not the 
true value.


Like in linear algebra one defines a vector as an element of a vector space with 
some properties, a confidence interval is an element of a confidence set  of 
intervals that have coverage under repeated sampling [Cousins]



Coverage
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  A property of the procedure, not of the single measurement.


[Rademacker]



1σ implies that ~1/3 of points should be off!
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One-sigma corresponds to 68.3% confidence level. 


The scatter of points should bring roughly one out of three points farther than the 
error bars of the others.
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What is the p-value plot? What is the local p-value? 
What is the look-elsewhere-effect?
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What does the “Brazil plot” mean? What is CLs?



Confidence intervals

34



Confidence intervals
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Given a model p(x|m), with  

- unknown value of the parameter m, and  

- known observed data x0,          

The confidence interval construction is a mathematical procedure to address the 
question:  

What are the values of m for which the observed data x0  is among the least 
extreme of all possible values of x? 



Confidence intervals
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What are the values of m for which the observed value x0  is among the least 
extreme possible values of x?                                                                                                                       

To define “extreme”, need an ordering principle. Rank the values of x for each 
possible value of m.  High rank means not extreme (likely to be included in the 
interval). Low rank means extreme (likely to be outside of the interval).


With that ordering, accumulate the values of highest-ranked (i.e., less extreme) 
values of x until you reach a predetermined fraction of x probability. Such fraction 
is the confidence level (CL). Typically 68%, 95%…


Given a model p(x|m), data x0, an ordering, and a CL, the confidence interval [m1, 
m2] includes those values of m for which x0  aren’t “extreme” at the chosen CL


For example: [m1, m2 ] determined at 68% CL includes the values of m for which 
the observed data x0 belongs to the least extreme 68% values of x




One-sided, two-sided.
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If “extreme” is defined as low-valued x, start 
accumulating from high values of x.  Yields 
one-sided interval (upper limit on m)

If “extreme” is defined as high-valued x, start 
accumulating from low values of x. Yields one-
sided interval (lower limit on m)

If “extremes” are high- and low-valued x, take 
the smallest central quantile. Yields central  
interval (lower limit on m)

(simplified interpretation applies only to one-dimensional x, and p(x|m) is such 
that higher values of m imply higher average x) 



CL
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The confidence level is usually chosen to match the standard thresholds 68.3% 
(1σ) 95.5% (2σ) etc. Define also the lowest-ranked α = 1- CL fraction of the most 
extreme values


Convenient practical trick: The endpoints of a central confidence interval at given 
CL can be determined from one-sided confidence intervals (lower and upper 
limits) at CL/2: 


• A CL=84% upper limit m2  excludes values of m for which x0  belongs to the set 
of lowest-valued x that has 16% (1-CL)  probability


• A CL=84% lower limit m1  excludes m values for which x0  belongs to the set of 
highest-valued x that has 16% (1-CL)  probability


Then [m1, m2] includes the central 68% fraction of x values ordered from high to 
low: a 1-(16%+16%) = 68% central confidence interval  



Confidence intervals

39[Cousins]



Confidence intervals

40[Cousins]

Suppose we observe 3 successes on 10 trials. What is our efficiency and its 
uncertainty?


It is tempting to replace ρ̂ = 0.30 into σ̂ = (1/ntot)√ρ̂(1-ρ̂) and obtain the interval 
[ρ₁, ρ₂] = ρ̂ ± σ̂   


This is not a proper confidence interval.


It does not follow the proper logic of frequentist inference: in the construction of 
the interval each σ should be consistently associated with each ρ value, while 
here I am using the same σ for all ρ values in the interval.


The flaw is manifest for the cases in which non = ntot  or non = 0.    



Confidence intervals

41[Cousins]



Confidence intervals

42[Cousins]



Neyman construction 
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J. Neyman came up with a mathematically rigorous procedure 
that allows constructing confidence intervals with the desired 
level of coverage


Jerzy Neyman (1894-1981)



Neyman construction illustrated
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Prior to looking at data, for each possible true value of parameter m, consider 
p(x|m). Its shape can vary as a function of m.

m0

m1

m2

p(x|m)

m

[Cranmer]



Neyman illustrated I
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Take a specific value m0 of the parameter 

p(x|m0)

[Cranmer]



Neyman illustrated II
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p(x|m0)

Use p(x|m0) to define an acceptance range in x, such that p(x ∈ range | m0) = 68%.

68%

[Cranmer][Cranmer]



Neyman illustrated III
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p(x|m0)

The definition of the acceptance range is not unique


The criterion to choose of the region is chosen is the ordering rule  

The rule defining the order of accumulation of the elements along x until the 
desired amount of probability, corresponding to the chosen confidence level (68%, 
in our example), is accumulated. 

68% 32%

[Cranmer]



Neyman illustrated V
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p(x|m)

m

m0

m1

m2

Derive the acceptance region for every possible true value of the parameter m

[Cranmer]



Neyman illustrated VI
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This defines a confidence belt for m.

m

m2

m1

m0

p(x|m)

[Cranmer]



Neyman illustrated VII
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m

m0

m�

m+

Then you do your analysis on data, and observe a value x0. The observed value 
intersects the confidence belt. The union of all values of m for which acceptance 
ranges are intersected by the measurement defines the confidence interval [m₋(x) 
m₊(x)] at the 68% CL for the parameter. Note that the extremes of the interval are 
random variables (functions of data x)

In repeated experiments, the confidence intervals will have different boundaries, but 
68% of them will contain the (unknown) true value of the parameter m

[Cranmer]



Why does it work?
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Make a measurement x0 and determine the corresponding confidence interval, For 
every true value m of the parameter, say m2, included in the interval, 68% of the 
measurements would be in the acceptance region. Each of the measurements will 
lead to a confidence interval that contains m2 . Hence, the interval contains the true 
value with 68% probability, m ∈ [m₋, m₊] at the 68% CL.

x

m2

m�

m+

x0[Cranmer]

“projection of the 
acceptance region 
onto the space of 
parameters”  — a 
set-theory union, not 
an integral.



Toy example
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Bags of various classes: each class contains a different fraction of white balls 
(1%, 5%, 50%, 95%, and 99%). Extract 5 balls from a bag and infer to which 
class the bag belongs 

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls

N
um

be
r o

f w
hi

te
 b

al
ls

 o
bs

er
ve

d



Note
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m

m0

m�

m+

For simplification purposes, examples discussed have one-dimensional space of 
parameter and one-dimensional space of observables and p(x|m) such that the 
higher the m the higher the x.

In general, x and m are x⃗ and m⃗ and they need not to have same ranges, units, or 
dimensionality



54

Additional material



Confidence intervals
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Minimum χ2 for a single observation of 10, yields μ̂ = 10. Then 
estimate σ̂ = 0.2 × μ̂ = 0.2 × 10 = 2.0


Therefore μ̂ ± σ̂ = [8.0, 12.0]
[Cousins]



Confidence intervals

56[Cousins]



Confidence intervals

57[Cousins]



LEE at Fermilab, the “Oops-Leon” discovery
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Leon Lederman in the ’60-’70 led many of the 
key experiments that laid the foundations of 
the standard model. 

In 1976, Lederman’s group 
announced the 
observation of a new 
particle produced in 
collisions of protons on 
Beryllium and decaying 
into e+ e- pairs, with a 
mass of about 6 GeV. 



The “Oops-Leon” particle
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This was published and provided a very strong 
candidate for the Upsilon, the bound state of a 
(then still unobserved) fifth quark.


More data did not confirm the finding.


The erroneous first claim has been later tracked 
down to a mistake in the statistical evaluation of 
the significance of the signal, which did not 
properly account for the LEE. 

Invariant ee mass



PS
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A couple of years later, the same group 
using muon pairs found the actual Upsilon 
meson, at 9.5 GeV.              


Nobody cared too much about the 6 GeV 
fluke, which someone dubbed “Oops-
Leon” in a pun over Lederman’s and the 
Upsilon’s name.
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Where is “elsewhere”?

Tenths, or hundreds, or thousands of 
distributions may have been inspected, in the 
same analysis or in other analyses.


Should we correct for these as well? 


How large is the testing space to base our 
correction on?   


Should we go back and correct previously published p-values when new 
analyses are completed?


Guidance (consensus at the Banff 2010 Statistics Workshop):  limit the testing 
space to models that are inspected within a single published analysis
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Far-out hadrons

In 1968, Art H. Rosenfeld at UC Berkeley 
surveyed the searches for exotic hadrons that did 
not fit the then-new static quark model.


He noted that the number of discovery claims 
quite matched with the number of statistical 
fluctuations expected in the data sets analyzed.


“[...]	This	reasoning	on	mul3plici3es,	extended	to	all	combina3ons	of	all	outgoing	par3cles	and	to	all	countries,	leads	to	
an	es3mate	of	35	million	mass	combina3ons	calculated	per	year.	How	many	histograms	are	ploAed	from	these	35	
million	combina3ons?	A	glance	through	the	journals	shows	that	a	typical	mass	histogram	has	about	2,500	entries,	so	
the	number	we	were	looking	for,	h	is	then	15,000	histograms	per	year.	[...]	Our	typical	2,500	entry	histogram	seems	to	
average	40	bins.	This	means	that	therein	a	physicist	could	observe	40	different	fluctua3ons	one	bin	wide,	39	two	bins	
wide,	38	three	bins	wide...	This	arithme3c	is	made	worse	by	the	fact	that	when	a	physicist	sees	'something',	he	then	
tries	to	enhance	it	by	making	cuts...”	

”	

Rosenfeld blamed the large mutliple testing corrections needed to account for the 
massive use of combination of observed particles to construct mass spectra 
containing potential exotic excesses.

[Dorigo]

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Far-out hadrons

“In	summary	of	all	the	discussion	above,	I	conclude	that	each	of	our	150,000	annual	histograms	is	capable	
of	genera3ng	somewhere	between	10	and	100	decep3ve	upward	fluctua3ons	[…]	To	the	theorist	or	
phenomenologist	the	moral	is	simple:	wait	for	nearly	5σ	effects.	For	the	experimental	group	who	has	
spent	a	year	of	their	3me	and	perhaps	a	million		 dollars,	the	problem	is	harder...	go	ahead	and	
publish...	but	they	should	realize	that	any	bump	less	than	about	5σ	calls	for	a	repeat	of	the	experiment.”

Rosenfeld also mentions the semiserious GAME test by his colleague, 
Gerry Lynch
“My	colleague	Gerry	Lynch	has	instead	tried	to	study	this	problem	‘experimentally’	using	a	‘Las	Vegas’	computer	program	

called	Game.	Game	is	played	as	follows.	You	wait	un3l	a	unsuspec3ng	friend	comes	to	show	you	his	latest	4-sigma	
peak.	You	draw	a	smooth	curve	through	his	data	(based	on	the	hypothesis	that	the	peak	is	just	a	fluctua3on),	and	
punch	this	smooth	curve	as	one	of	the	inputs	for	Game.	The	other	input	is	his	actual	data.	If	you	then	call	for	100	Las	
Vegas	histograms,	Game	will	generate	them,	with	the	actual	data	reproduced	for	comparison	at	some	random	page.	
You	and	your	friend	then	go	around	the	halls,	asking	physicists	to	pick	out	the	most	surprising	histogram	in	the	
printout.	Oben	it	is	one	of	the	100	phoneys,	rather	than	the	real	‘4-sigma’	peak.”	

[Dorigo]


