Experimental mini-review on leptonic *B* decays

Youngjoon Kwon

Yonsei University Seoul, Korea

WG 2 @ CKM 2016, TFIR, Mumbai

Outline

- ► Motivations and features
 - * To tag, or not to tag
- $\blacktriangleright B^+ \rightarrow \tau^+ \nu$
- $ightharpoonup B^+ o \ell^+ \nu(\gamma)$
- ► Prospects (Belle II)

Motivations for $B^+ \to \ell^+ \nu$

$$\Gamma(B^+ o \ell^+
u) = rac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - rac{m_\ell^2}{m_B^2}
ight)^2 f_B^2 |V_{ub}|^2.$$

- ▶ very clean place to measure $f_B|V_{ub}|$ and/or search for new physics (e.g. H^+ , LQ)
- ▶ but, helicity-suppressed: $\Gamma \propto m_\ell^2$ $\Gamma(B^+ \to e^+ \nu) \ll \Gamma(B^+ \to \mu^+ \nu) \ll \Gamma(B^+ \to \tau^+ \nu)$

$B^+ \to \tau^+ \nu^-$ by new physics, e.g. H^+

▶ $B^+ \to \tau^+ \nu$ can be affected by new physics effects For instance, H^+ of 2-Higgs doublet model (type II)

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \mathcal{B}_{\text{SM}}(B^+ \to \tau^+ \nu) \times r_H$$

where $r_H = \left[1-(m_B^2/m_H^2)\tan^2\beta\right]^2$

W.S. Hou, PRD 48, 2342 (1993)

► The ratio $\mathcal{B}(B^+ \to \tau^+ \nu)/\mathcal{B}(B^+ \to \ell^+ \nu)$ can be a very powerful test of lepton flavor universality.

"It's worth to look for LFU breaking effects in $B \to \tau \nu$ and $B \to K \tau \tau$ " by P. Paradisi @ CKM 2016

Features of $B^+ \to \ell^+ \nu$

SM predictions

- ▶ $\mathcal{B}(B^+ \to \tau^+ \nu) \sim 10^{-4}$
- $\triangleright \mathcal{B}(B^+ \to \mu^+ \nu) \sim \mathcal{B}(B^+ \to \tau^+ \nu)/300$
- ▶ $\mathcal{B}(B^+ \to e^+ \nu) \sim \mathcal{B}(B^+ \to \tau^+ \nu)/10^7$

Experimental features

 $\triangleright B^+ \rightarrow \tau^+ \nu$

- large BF, but multiple ν 's
- ▶ $B^+ \to \ell^+ \nu \; (\ell \neq \tau)$ $E_{\ell} \sim M_B/2$, but small BF

To tag, or not to tag

- ▶ Why bother?
 - * $B^+ \to \tau^+ \nu$ has multiple ν 's in the final state
 - * need extra kinematic constraints to improve sensitivity
 - * exploit $\Upsilon(4S)$ producing $B\bar{B}$ and nothing else

$$e^+e^- o \Upsilon(4S) o B_{\mathrm{sig}} \overline{B}_{\mathrm{tag}}$$

- ► How to tag?
 - * "hadronic tagging" full reconstruction of the decay chain of B_{tag}
 - * "semileptonic tagging" use $B^+ \to \overline{D}^{(*)} \ell^+ \nu$

$B^+ \to \tau^+ \nu$ by hadronic *B*-tagging

Full-recon. B sample for $B^+ \rightarrow \tau^+ \nu$ analysis

"NeuroBayes"

5.26

5 25

 M_{loc} [GeV / c^2]

Full-recon. B⁺ sample

Old vs. New @ same efficiency

5 27

5.28

$B^+ \to \tau^+ \nu$ (Belle, had) – signal extraction

- ► Signal τ modes: $\tau^+ \to e^+ \nu_e \overline{\nu}_\tau$, $\mu^+ \nu_\mu \overline{\nu}_\tau$, $\pi^+ \overline{\nu}_\tau$, $\rho^+ \overline{\nu}_\tau$
- \blacktriangleright π^0 , K_L^0 veto demand no trace of π^0 , K_L^0 after reconstructing B_{tag} and B_{sig}
 - K_L^0 gives $\sim 5\%$ improvement in the expected sensitivity
- ▶ 2D fitting to $E_{\text{ECL}} \& M_{\text{miss}}^2$
 - improve sensitivity by $\sim 20\%$; more robust against peaking backgs. in E_{ECL}

 $E_{\rm ECL}=$ residual energy in the EM calorimeter (ECL) that has not been attributed to either $B_{
m sig}$ or $B_{
m tag}$

$B^+ \to \tau^+ \nu$ (Belle, had) – Result

Simultaneous fit to different τ decay modes
 Figures below shown for the sum of different τ decay modes

- ► Signal yield: $62^{+23}_{-22} \pm 6$ significance = 3.0σ incl. systematic error Major sources of systematic error are: background PDF (8.8%), K_L^0 efficiency (7.3%), and B_{tag} efficiency (7.1%).
- \triangleright $\mathcal{B}(B^+ \to \tau^+ \nu) = (0.72^{+0.27}_{-0.25} \pm 0.11) \times 10^{-4}$

PRL 110, 131801 (2013)

$B^+ \to \tau^+ \nu$ (BaBar, had) – Result

- ► Hadronic *B*-tagging analysis with $N_{B\bar{B}} = 468 \times 10^6$
- ► Signal τ modes: $\tau^+ \to e^+ \nu_e \overline{\nu}_\tau$, $\mu^+ \nu_\mu \overline{\nu}_\tau$, $\pi^+ \overline{\nu}_\tau$, $\rho^+ \overline{\nu}_\tau$
- Signal extraction via $E_{\rm extra}$ (= $E_{\rm ECL}$) $N_{\rm sig} = 62.1 \pm 17.3$ from simultaneous fit to the four au modes
- $\triangleright \mathcal{B}(B^+ \to \tau^+ \nu) = (1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$
- ► Major systematic uncertainties are from background PDF's (10%), *B*-tag efficiency (5%), etc.

PRD 88, 031102(R) (2013)

$B^+ o au^+ u$ (Belle, SL-tag)

- ▶ tagged by $B^- \to D^{(*)0} \ell^- \overline{\nu}$
- ► Signal extraction by 2D-fitting (E_{ECL}, p_{sig}^*) $N_{sig} = 222 \pm 50$ events
- ▶ $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.25 \pm 0.28 \pm 0.27) \times 10^{-4}$ 4.6 σ significance by combining had-tag and SL-tag analyses of Belle

$B^+ o au^+ u$ Summary

Belle combined:
$$\mathcal{B}(B^+ \to \tau^+ \nu) = (0.91 \pm 0.22) \times 10^{-4}$$

BaBar combined: $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.79 \pm 0.48) \times 10^{-4}$
World average: $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

- ▶ Belle vs. BaBar consistent within $\sim 1.7\sigma$
- ► The average is consistent with SM

$B^+ \to \tau^+ \nu$ constraints on charged Higgs

▶ With 2-Higgs doublet model (type II),

$$\mathcal{B}(B^+ \to \tau^+ \nu) = \mathcal{B}_{\rm SM}(B^+ \to \tau^+ \nu) \times \left[1 - (m_B^2/m_H^2) \tan^2 \beta\right]^2$$

Plots are from PRD 88, 031102(R) (2013), by BaBar, based on BaBar's combined $\mathcal{B}(B^+ \to \tau^+ \nu)$.

Search for $B^+ \to \ell^+ \nu$

- ▶ (experimental) very clean
 - * just a mono-energetic charged lepton and nothing else
- (theoretical) very small branching fraction compared to $B^+ \to \tau^+ \nu$
 - * helicity suppression: $\Gamma \propto m_\ell^2$
- ▶ Tagged vs. Untagged for $B^+ \to \ell^+ \nu$,
 - * tagging is not really necessary \cdot : mono-energetic ℓ^+ in the final state
 - * Nonetheless, analyses with tagging have also been tried

$\Gamma(B^+ \to e^+ \nu_e) / \Gamma_{\text{total}}$

_	COMMENT	TECN	NT ID	DOCUME	•	CL%	$VALUE (10^{-6})$
untagged	$e^+ \ e^- \rightarrow \Upsilon(4S)$	BELL	/A 2007	SATOYAN	1	90	< 0.98
	mits, etc ***	jes, fits, li	for averag	owing data	foll	se the	*** We do not u
had tag	$e^+~e^-\to \Upsilon(4S)$	BELL	2015	YOOK	2	90	<3.5
SL tag	$e^+~e^-\to \Upsilon(4S)$	BABR	2010E	AUBERT	1	90	<8
untagged	$e^+~e^-\to \Upsilon(4S)$	BABR	2009V	AUBERT	1	90	<1.9
had tag	$e^+~e^-\to \Upsilon(4S)$	BABR	2008AD	AUBERT	1	90	<5.2

$$\Gamma(B^+ \to \mu^+ \nu_\mu)/\Gamma_{\text{total}}$$

	$VALUE (10^{-6})$	CL%		DOCUMENT ID	TECN COMMENT
untagged	< 1.0	90	1	AUBERT 2009V	BABR $e^+ e^- \rightarrow \Upsilon(4S)$
	*** We do not u	se the t	foll	owing data for averag	es, fits, limits, etc ***
had tag	<2.7	90	2	YOOK 2015	BELL $e^+ e^- \rightarrow \Upsilon(4S)$
SL tag	<11	90	1	AUBERT 2010E	BABR $e^+ e^- \rightarrow \Upsilon(4S)$
had tag	<5.6	90	1	AUBERT 2008AD	BABR $e^+ e^- \rightarrow \Upsilon(4S)$
untagged	<1.7	90	1	SATOYAMA 2007	BELL $e^+ e^- \rightarrow \Upsilon(4S)$

Why then bother with 'tagged' for $B^+ \to \ell^+ \nu$?

- The signal lepton candidate's momentum in B_{sig} rest frame. -

- \blacktriangleright much better resolution of p_{ℓ}^{B} with the full-recon. tagging
- ▶ But, does it make a case for 'full-recon-tagged' analysis of $B^+ \to \ell^+ \nu$?

Why then bother with 'tagged' for $B^+ \to \ell^+ \nu$?

- Note: $\mathcal{B}_{SM}(B^+ \to e^+ \nu) \sim 10^{-11}$ and $\mathcal{B}_{SM}(B^+ \to \mu^+ \nu) \sim 3 \times 10^{-7}$ ⇒ Any signal for $B^+ \to e^+ \nu$ at the Belle sensitivity is way beyond the SM
- ► In that case, are we *sure* what we see is *really* $B^+ \to e^+ \nu$? What about $B^0 \to e^+ \tau^-$? How about $B^+ \to e^+ X^0$ where X^0 is any unknown particle from NP?
- ▶ With full-recon., we can use p_{ℓ}^{B} to discern many such cases
- ► Belle analysis with hadronic *B*-tagging

PRD 91, 052016 (2015)

Mode	ϵ_{s} [%]	$N_{ m obs}$	$N_{ m exp}^{ m bkg}$	\mathcal{B} (in 10^{-6})
$B^+ \rightarrow e^+ \nu_e$	0.086 ± 0.007	0	0.10 ± 0.04	< 3.5
$B^+ o \mu^+ u_\mu$	0.102 ± 0.008	0	$0.26^{+0.09}_{-0.08}$	< 2.7

$B^+ \to \ell^+ X^0$ (Belle)

- Search for massive neutral invisible fermion " X^0 "
- a heavy neutrino, or an LSP in RPV models, or whatever

 Very similar experimental signature to
- $B^+ \rightarrow \ell^+ \nu$
- ▶ But, p_{ℓ}^{B} gives a handle on M_{X}

$B^+ o \ell^+ X^0$ (Belle)

PRD 94, 012003 (2016)

$B^0 \to \ell^{\pm} \tau^{\mp}$ (BaBar)

PRD 77, 091104(R) (2008)

- ▶ In a hadronic *B*-tagging analysis very similar to $B^+ \to \ell^+ \nu$, BaBar also searched for $B^0 \to \ell^{\pm} \tau^{\mp}$.
- ▶ Background suppression using m_{ES} and E_{extra}
- Signal extraction by unbinned max. likelihood fit to p_ℓ^B

$${\cal B}(B^0 o e^\pm au^\mp) < 2.8 imes 10^{-5} \ {\cal B}(B^0 o \mu^\pm au^\mp) < 2.2 imes 10^{-5}$$

$$B^+ \to \ell^+ \nu \gamma$$

▶ Helicity suppression (of $B^+ \to \ell^+ \nu$) is avoided by γ .

$$\Gamma(B^+ o \ell^+
u \gamma) \propto rac{lpha_{
m EM} (G_{
m F} m_B^2 |V_{ub}| f_B)^2}{\lambda_B^2}$$

- \triangleright λ_B is needed for QCDF to calculate, e.g., charmless hadronic B decays
- ► SM expectation: $\mathcal{B}(B^+ \to \ell^+ \nu \gamma) \sim \mathcal{O}(10^{-6})$
 - * Calculation is reliable only for $E_{\gamma} > 1$ GeV
- ▶ Most stringent limits from Belle (2015) with hadronic *B*-tagging
 - * using neural net to suppress the most significant background $B^+ \to \pi^0 \ell^+ \nu$

$B^+ \to \ell^+ \nu \gamma$ (Belle)

Enhanced signal MC portions in the figures correspond to $\mathcal{B}=30\times 10^{-6}$.

$$B^+ \to \ell^+ \nu \gamma$$
 (Belle)

PRD 91, 112009 (2015)

• Signal yields and partial \mathcal{B} for $E_{\gamma} > 1$ GeV

Mode	Signal yield	\mathcal{B} (10 $^{-6}$)	Significance (σ)	${\cal B}$ limit (10 $^{-6}$)
${\it B}^+ ightarrow {\it e}^+ u_{\it e} \gamma$	$6.1^{+4.9+1.0}_{-3.9-1.3}$	$3.8^{+3.0+0.7}_{-2.4-0.9}$	1.7	< 6.1
${\it B}^+ o \mu^+ u_\mu \gamma$	$0.9^{+3.6+1.0}_{-2.6-1.5}$	$0.6^{+2.1+0.7}_{-1.5-1.1}$	0.4	< 3.4
${\it B}^+ ightarrow \ell^+ u_\ell \gamma$	$6.6^{+5.7+1.6}_{-4.7-2.2}$	$2.0{}^{+1.7}_{-1.4}{}^{+0.6}_{-0.7}$	1.4	< 3.5

- ► From the partial \mathcal{B} , we set $\lambda_B(E_{\gamma} > 1 \text{ GeV}) > 238 \text{ MeV}$ By varying input parameters, we obtain $\lambda_B > (172, 410) \text{ MeV}$
- ▶ 2nd analysis with looser cut ($E_{\gamma} > 0.4$ GeV) also gives no signal and consistent results

BaBar result: $\mathcal{B}(B^+ \to \ell^+ \nu \gamma) < 15.6 \times 10^{-6}$, PRD 80, 111105(R) (2009)

$B^+ \to \tau^+ \nu$ Prospects for Belle II

Plots & tables by A. Zupanc (Belle II)

- Eextra is crucial for B → τv study
 - In Belle II, beam background is much higher
 - But these can be rejected by selection based on ECL cluster's energy, timing, shape, etc.
- Expected precision at 1 ab⁻¹ ~ 27%
- Major systematic sources (bkg. PDF, K_L veto eff., B_{tag} eff.) can be improved with more data

Eextr	a < 1	BaBar had. (2013)	Belle had. (2013)	Belle II MC study
sigr effic.		0.72	1.1	1.6

$B^+ \to \tau^+ \nu$ Prospects for Belle II

Expected precision with $\int \mathcal{L} dt = 50 (5) \text{ ab}^{-1}$

- ▶ $\mathcal{B}(B^+ \to \tau^+ \nu)$: 5% (10%)
- ► $\mathcal{B}(B^+ \to \mu^+ \nu)$: 7% (20%)

$B^+ \to \tau^+ \nu$ Prospects for Belle II

Concluding Remarks

- ▶ Leptonic *B* decays, in particular $B^+ \to \ell^+ \nu$ ($\ell = e, \mu, \tau$), provide powerful probe for new physics beyond the SM.
- ▶ $B^+ \to \tau^+ \nu$ decays have been measured at nearly 5σ significance, and new physics models such as 2HDM (II) have been tested.
- ▶ With hadronic *B*-tagging, Belle has searched for *invisible*, *massive*, *lepton-like neutral* particle X^0 in $B^+ \to \ell^+ X^0$ for the first time.
- ▶ Belle II with $\int \mathcal{L} dt = 50 \text{ ab}^{-1}$ branching fractions for $B^+ \to \tau^+ \nu$ ($B^+ \to \mu^+ \nu$) are expected to be measured with precision of 5 (7)%.

Back-up slides

- ► tagged by $D^0 \ell^- \nu X$ (*X*, not explicitly reconstructed)
- ► Count events in $E_{\rm extra}$ signal region $N_{\rm obs} = 583$ events, with $N_{\rm bg} = 509 \pm 30$ events
- \triangleright $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$

PRD 81, 051101(R) (2010)

$B^+ \to \ell^+ \nu \gamma$ (BaBar)

PRD 80, 111105(R) (2009)

- hadronic B-tagging
- ► $N_{BB} = 465 \times 10^6$
- Signal counting in $M_{\rm miss}^2$ for $e\nu\gamma~(\mu\nu\gamma)$
 - * $-1 < M_{\text{miss}}^2 < 0.46 \ (0.41) \ \text{GeV}^2/c^4$
 - * 4 (7) events observed
 - * with 2.7 \pm 0.6 (3.4 \pm 1.0) background events
- Results

$$\mathcal{B}(B^+ \to \ell^+ \nu \gamma) < 15.6 \times 10^{-6}$$

 $\Rightarrow \lambda_B > 0.3 \text{GeV}$ @ 90% CL