Geant4 Hadronic Models

Geant4 and its Application to HEP and Astrophysics December 5, 2022

Sunanda Banerjee

G4 Hadronic Processes, Models and Cross Sections

- In Geant4 physics is assigned to a particle through processes
- Each process may be implemented
 - directly, as part of the process, or
 - in terms of a model class
- Geant4 often provides several models for a given process
 - user must choose
 - can, and sometimes must, have more than one per process
- A process must also have cross sections assigned
 - here too, there are options

Workshop on Geant4 and its Application

Cross Sections

- Default cross-section sets are provided for each type of hadronic process
 - fission, capture, elastic, inelastic
 - can be overridden or completely replaced
- Different types of cross-section sets exist
 - some contain a few numbers to parametric the cross-section as a function of energy
 - some represent large databases
 - some are purely theoretical (equation driven)

Alternative Cross Sections

- Cross-section databases are available for low-energy neutrons
 - G4NDL available among the Geant4 distribution files
 - Livermore database (LEND) is also available
 - these are available with or without thermal cross-sections
- Cross section table is available for medium energy neutrons and protons
 - 14 MeV < E < 20 MeV
- Several alternatives exist for ion-nucleus cross-section
 - these are empirical and parametrised cross-section formulae with some theoretical insight
 - these are good for E/A < 10 GeV
- Alternative cross-sections also exist for pion cross-section

Energy

Data Driven Hadronic Models

- These are characterised by lots of data on
 - cross sections
 - angular distributions
 - multiplicities, etc.
- To get interaction length and final state, these models depend on interpolation of data
 - cross sections, Legendre coefficients, ..
- Examples:
 - neutrons with E < 20 MeV
 - coherent elastic scattering (pp, np, nn)
 - radioactive decays

Theory Driven Hadronic Models

- These are dominated by theoretical arguments (QCD, Glauber theory, exciton model, ...)
- Final states (number and type of particles in the final sate with their energy and angular distributions) are determined by sampling theoretically calculated distributions
- This type of models is preferred as they ate the most predictive
- Examples:
 - quark-gluon string models (projectiles with E > 20 GeV)
 - intra-nuclear cascade models (intermediate energies)
 - nuclear de-excitation and break-up

G4

Parametrised Hadronic Models

- Current versions do not contain any parametrised version. In versions preceding Geant4 10.0, two models existed. They were re-engineered versions of the Fortran Gheisha code used in Geant3
- These models depended mostly on fits to data with some theoretical guidance
- Two such models existed:
 - Low Energy Parametrised (LEP) for E < 20 GeV
 - High Energy Parametrised (HEP) for E > 20 GeV
 - each type referred to a collection of models (one for each type of hadron)
- These codes were fast and existed for all types of particles. But they were not detailed enough and there was no-one to maintain these codes

Partial Hadronic Model Inventory

1 MeV 10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1TeV

Workshop on Geant4 and its Application

Model Management

Energy

Workshop on Geant4 and its Application

Hadron Elastic Scattering

- G4WHadronElasticProcess: general elastic scattering
 - valid for all energies
 - valid for p, n, π , K, hyperons, anti-nucleons, anti-hyperons
 - based in part on old Gheisha code, but with relativistic corrections
- Coherent elastic
 - G4LEpp for (p,p), (n,n) : taken from SAID phase shift analysis, good up to 1.2 GeV
 - G4LEnp for (n,p) : same as above
 - G4HadronElastic for general hadron-nucleus scattering
- Neutron elastic
 - high precision (HP) model uses data from ENDF (E < 20 MeV)

Elastic Scattering Validation

(G4HadronElastic)

Precompound Models

- G4PrecompoundModel is used for nucleon-nucleus interactions at low energy and as a nuclear de-excitation model within higher-energy codes
 - valid for incident p, n from 0 to 170 MeV
 - takes a nucleus from a highly excited set of particle-hole states down to equilibrium energy by emitting p, n, d, t, ³He and α
 - once equilibrium is reached, four other models are called to take care of nuclear evaporation and break-up
- The parameterized models and two cascade models have their own version of nuclear de-excitation models embedded in them

Precompound Models

• Invocation of Precompound model:

G4ExcitationHandler* handler = new G4ExcitationHandler;

- G4PrecompoundModel* preco = new G4PrecompoundModel(handler);
- // Create de-excitation models and assign them to precompound model

G4NeutronInelasticProcess* nproc = new G4NeutronInelasticProcess; nproc->RegisterMe(preco); neutronManager->AddDiscreteProcess(nproc); // Register model to process, process to particle

- Here the model is invoked in isolation, but usually it is used in combination with high energy or cascade models
 - a standard interface exists for this

Bertini-style Cascade Model

- A classical (non-quantum mechanical) cascade
 - average solution of a particle traveling through a medium (Boltzmann equation)
 - no scattering matrix calculated
 - can be traced back to some of the earliest codes (1960s)
- Core code:
 - elementary particle collisions with individual protons and neutrons: free space cross sections used to generate secondaries
 - cascade in nuclear medium
 - pre-equilibrium and equilibrium decay of residual nucleus
 - target nucleus built of three concentric shells

Using the Bertini Cascade

- In Geant4 the Bertini cascade is used for p, n, π^+ , π^- , K⁺, K⁻, K⁰_L, K⁰_S, Λ , Σ^0 , Σ^+ , Σ^- , Ξ^0 , Ξ^- , Ω^-
 - valid for incident energies of 0 10 GeV
 - can also be used for gammas
- Invocation sequence:

G4CascadeInterface* bert = new G4CascadeInterface; G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess; pproc->RegisterMe(bert); protonManager->AddDiscreteProcess(pproc); // same sequence for all other hadrons and gamma

Validation of Bertini Cascade

Workshop on Geant4 and its Application

Binary Cascade Model

- Modelling sequence similar to Bertini cascade, except
 - it's a time-dependent model
 - hadron-nucleon collisions handled by forming resonances which then decay according to their quantum numbers
 - particles follow curved trajectories in smooth nuclear potential
- \bullet Binary cascade is currently used for incident p, n and π
 - valid for incident p, n from 0 to 10 GeV
 - valid for incident π^+ , π^- from 0 to 1.3 GeV
- A variant of the model, G4BinaryLightIonReaction, is valid for incident ions up to A = 12 (or higher if target has A < 12)

Using the Binary Cascade

• Invocation sequence:

G4BinaryCascade* binary = new G4BinaryCascade(); G4PionPlusInelasticProcess* piproc = new G4PionPlusInelasticProcess(); piproc->RegisterMe(binary); piplus_Manager->AddDiscreteProcess(piproc);

• Invoking BinaryLightIonReaction:

G4BinaryLightIonReaction* ionBinary =

new G4BinaryLightIonReaction();

G4IonInelasticProcess* ionProc = new G4IonInelasticProcess();

ionProc->RegisterMe(ionBinary);

genericlonManager->AddDiscreteProcess(ionProc);

Validation of Binary Cascade

256 MeV protons

Workshop on Geant4 and its Application

S. Banerjee

INCL++ Cascade Model

- Model elements:
 - time-dependent model
 - smooth Woods-Saxon or harmonic oscillator potential
 - particles travel in straight lines through potential
 - delta resonance formation and decay (like Binary cascade)
- Valid for incident p, n and π , d, t, ³He, α from 150 MeV to 3 GeV
 - also works for projectiles up to A = 12
 - targets must be 11 < A < 239
 - ablation model (ABLA) can be used to de-excite nucleus
- Used successfully in spallation studies
 - also expected to be good in medical applications

G4 Validation of INCL++ Cascade Model

Green: INCL4.3 Red: INCL4.2 Blue: Binary cascade

Low Energy Neutron Physics

- Below 20 MeV incident energy, Geant4 provides several models for treating neutron interactions in detail
- The high precision models (NeutronHP) are data-driven and depend on a large database of cross sections, etc.
 - the G4NDL database is available for download from the Geant4 web site
 - elastic, inelastic, capture and fission models all use this isotopedependent data
- There are also models to handle thermal scattering from chemically bound atoms

G4 Geant4 Neutron Data Library (G4NDL)

- Contains the data files for the high precision neutron models
 - includes both cross sections and final states
- From Geant4 9.5 onward, G4NDL is based solely on the ENDF/B-VII database
 - G4NDL data is now taken only from ENDF/B-VII, but still has G4NDL format
 - use G4NDL 4.0 or later
- Prior to Geant4 9.5, G4NDL selected data from 9 different databases, each with its own format
 - Brond-2.1, CENDL2.2, EFF-3, ENDF/B-VI, FENDL/E2.0, JEF2.2, JENDL-FF, JENDL-3 and MENDL-2
 - G4NDL also had its own (undocumented) format

G4NeutronHPElastic

- Handles elastic scattering of neutrons by sampling differential cross section data
 - interpolates between points in the cross section tables as a function of energy
 - also interpolates between Legendre polynomial coefficients to get the angular distribution as a function of energy
 - scattered neutron and recoil nucleus generated as final state
- Note that because look-up tables are based on binned data, there will always be a small energy non-conservation
 - true for inelastic, capture and fission processes as well

G4HPNeutronInelastic

- Currently supports 34 inelastic final states + n gamma (discrete and continuum)
 - n (A,Z) → (A-1, Z-1) n p • n (A,Z) → (A-3, Z) n n n n • n (A,Z) → (A-4, Z-2) d t •
- Secondary distribution probabilities
 - isotropic emission
 - discrete two-body kinematics
 - N-body phase space
 - continuum energy-angle distributions (in lab and CM)

Gd154 (n.2n) channel

G4NeutronHPCapture

- Neutron capture on a nucleus produces photons described by either
 - the number of photons (multiplicity), or
 - photon production cross sections
- Photon spectra are either
 - discrete emission, using either cross sections or multiplicities from data libraries, or
 - continuous, with the spectrum calculated according to tabulated parameters
 - f(E->Eg) = Si pi(E) gi(E->Eg)
 where pi and gi come from the libraries

High Precision Neutrons

Comparing Geant4 with MCNPX

G4NeutronHPFission

- Currently only uranium fission data are available in Geant4
- First chance, second chance, third chance and fourth chance fission taken into account
- Resulting neutron energy distributions are implemented in different ways
 - as a function of incoming and outgoing neutron energy
 - as a Maxwell spectrum
 - as an evaporation spectrum
 - as an energy-dependent Watt spectrum
 - as Madland-Nix spectrum

G4Including HP Neutrons in the Physics List

• Elastic scattering

G4HadronElasticProcess* theNEP = new G4HadronElasticProcess;

// the cross sections
G4NeutronHPElasticData* theNEData = new G4NeutronHPElasticData;
theNEP->AddDataSet(theNEData);

// the model G4NeutronHPElastic* theNEM = new G4NeutronHPElastic; theNEP->RegisterMe(theNEM); neutManager->AddDiscreteProcess(theNEP);

G4NeutronHPorLE Models

- The high-precision neutron models do not cover all elements or isotopes
 - often no data: latest G4NDL has 395 isotopes, but there are thousands
 - data may exist but not yet be evaluated
- A Geant4 application must have a model under all circumstances, otherwise, a fatal error occurs
- G4NeutronHPorLE models were developed to solve this problem
 - HPorLE models call the HP models if data exists
 - if no data, the Low Energy Parameterized (GHEISHA-style) model is called
 - elastic, inelastic, capture and fission provided

Thermal Neutron Scattering from Chemically Bound Atoms

- At thermal energies, atomic motion, vibration, and rotation of bound atoms affect neutron scattering cross-sections and the angular distribution of secondary neutrons
- The energy loss (or gain) of such scattered neutrons may be different from those from interactions with unbound atoms
- Original HP models include only individual Maxwellian motion of the target nucleus (free gas model)
- New behaviour handled by model and cross-section classes
 - G4HPThermalScatteringData, and
 - G4HPThermalScattering

G4 LEND — the Livermore Neutron Models

- Provides an alternative to the HP models
 - better code design
 - faster performance
 - the Livermore database is not yet as extensive as G4NDL
- Corresponding model for each model in HP
 - elastic, inelastic, capture, fission
- Invocation in physics list:
 - use model names G4LENDElastic, G4LENDInelastic, G4LENDCapture, G4LENDFission, and cross sections G4LENDElasticCrossSection, G4LENDInelasticCrossSection, G4LENDCaptureCrossSection, G4LENDFissionCrossSection
- The Low Energy Nuclear Data files can be downloaded from the website <u>ftp://gdo-nuclear.ucllnl.org/pub</u>

Ion-Ion Inelastic Scattering

- Up to now, considered only hadron-nucleus interactions, but Geant4 has five different nucleus-nucleus collision models
 - G4BinaryLightIon
 - G4WilsonAbrasion/G4WilsonAblation
 - G4EMDissociationModel
 - G4QMD
 - G4Incl
- Also provided are several ion-ion cross-section data sets
- Currently, no ion-ion elastic scattering models provided

G4BinaryLightIonReaction

- This model is an extension of the G4BinaryCascade model (to be discussed later)
- The hadron-nuclear interaction part is identical, but the nucleus-nucleus part involves:
 - preparation of two 3D nuclei with Woods-Saxon or harmonic oscillator potentials
 - the lighter nucleus is always assumed to be the projectile
 - nucleons in the projectile are entered with their positions and momenta into the initial collision state
 - nucleons are interacted one-by-one with the target nucleus, using the original Binary cascade model

G4EMDissociation Model

- Electromagnetic dissociation is the liberation of nucleons or nuclear fragments as a result of strong EM fields
 - as when two high-Z nuclei approach
 - exchange of virtual photons instead of nuclear force
- Useful for relativistic nucleus-nucleus collisions where the Z of the nucleus is large
- Model and cross sections are an implementation of the NUCFRG2 model (NASA TP 3533)
- Can be used up to 100 TeV

INCL Nucleus-Nucleus

- INCL hadron-nucleus model used to interact projectile nucleons with target
- True potential is not used for projectile nucleus, but binding energy is taken into account
- True potential is used for the target
- Projectile nucleons can pass through to form fragments or interact with the nucleus

G4QMD Model

- BinaryLightIonReaction has some limitations:
 - neglects participant-participant scattering
 - uses simple time-independent nuclear potential
 - imposes small A limitation for target or projectile
 - the binary cascade base model can only go to 5-10 GeV
- A solution to this is QMD (Quantum Molecular Dynamics) model
 - an extension of the classical molecular dynamics model
 - treats each nucleon as a gaussian wave packet
 - propagation is done with scattering which takes Pauli's principle into account
 - can be used for high energy, high Z collisions

G4QMD Validation

180MeV Proton on Al Fragment A=7

Including QMD in the Physics List

• G4HadronInelasticProcess* ionInel =

new G4HadronInelasticProcess("ionInelastic",

- G4GenericIon::G4GenericIon());
 - // the cross sections
 - G4TripathiCrossSection* tripCS = new G4TripathiCrossSection;
 - G4IonsShenCrossSection* shenCS = new
- G4IonsShenCrossSection;
 - ionInel->AddDataSet(shenCS);
 - ionInel->AddDataSet(tripCS);
 - // assign model to process
 - G4QMDReaction* theQMD = new G4QMDReaction;
 - ionInel->RegisterMe(theQMD);
 - G4ProcessManager* pman = G4GenericIon::G4GenericIon()->

```
GetProcessManager();
```

pman->AddDiscreteProcess(ionInel);

Radioactive Decay

- The process to simulate radioactive decays of nuclei
 - in flight
 - at rest
- α , β^+ , β^- decay, and electron capture (EC) are implemented
- Empirical and data-driven
 - data files are taken from Evaluated Nuclear Structure Data Files (ENSDF)
 - half lives, nuclear level structure for parent and daughter nuclides, decay branching ratios, the energy of the decay process
- If the daughter of nuclear decay is an isomer, prompt de-excitation is done by using G4PhotonEvaporation
- Analog (non-biased) sampling is the default
- Biased sampling is also implemented

Using Radioactive Decays

- Can be accessed with messengers (biasing options etc,)
- To activate radioactive decays through the physics list, insert
 - G4RadioactiveDecay* theDecay = new G4RadioactiveDecay; G4ProcessManager* pmanager = G4ParticleTable::GetParticleTable()-> FindParticle("Genericlon")->GetProcessManager();
 - pmanager->AddProcess(theDecay);
 pmanager->SetProcessOrdering(theDecay, idxPostStep);
 pmanager->SetProcessOrdering(theDecay, idxAtRest);

G4 Gamma- and Lepto-nuclear Processes

- These models are neither exclusively electromagnetic nor hadronic
 - gamma-nuclear
 - electro-nuclear
 - muon-nuclear
- Geant4 processes available:
 - G4PhotoNuclearProcess (implemented by two models)
 - G4ElectronNuclearProcess (implemented by one model)
 - G4PositronNuclearProcess (implemented by one model)
 - G4MuonNuclearProcess (implemented by two models)
- Gammas interact directly with the nucleus
 - at low energies, they are absorbed and excite the nucleus as a whole
 - at high energies, they act like hadrons (pion, rho, etc.) and form resonances with protons and neutrons
- Electrons and muons cannot interact hadronically, except through virtual photons
 - electron or muon passes by a nucleus and exchanges virtual photon
 - The virtual photon then interacts directly with the nucleus (or nucleons within the nucleus)

Workshop on Geant4 and its Application

Neutrino Scattering

- Not directly implemented inside Geant4
 - there exist interfaces to GENIE
 - neutral current and charged current scattering could be added
- The nuclear part of the interaction is essentially done
 - can be handled by Bertini, FTF
- The weak part of interaction will take some work
 - \bullet implementation of existing formulae for sampling $\nu,\,Q^2$

QCD String Models

- Fritiof (FTF) valid for
 - p, n, π , K, Λ , Σ , Ω from 3 GeV to ~TeV
 - anti-proton, anti-neutron, anti-hyperons at all energies
 - anti-d, anti-t, anti-³He, anti- α with momenta between 150 MeV/nucleon and 2 GeV/nucleon
- Quark-Gluon String (QGS) valid for
 - p, n, π , K from 15 GeV to ~TeV
- Both models handle:
 - building a 3-D model of the nucleus from individual nucleons
 - splitting nucleons into quarks and di-quarks
 - formation and excitation of QCD strings
 - string fragmentation and hadronization

How the QCD String Model Works

- Lorentz contraction turns the nucleus into a pancake
- All nucleons within 1 fm of the path of the incident hadron are possible targets
- Excited nucleons along the path collide with neighbours
 - n + n \rightarrow n Δ , NN, $\Delta\Delta$, N Δ , ...
 - essentially a quark-level cascade in the vicinity of path → Reggeon cascade
- All hadrons are treated as QCD strings
 - the projectile is a quark-antiquark pair or quark-diquark pair
 - target nucleons are quark-diquark pairs

How the QCD String Model Works

- Hadron excitation is represented by a stretched string
 - the string is a set of QCD colour lines connecting the quarks
- When a string is stretched beyond a certain point it breaks
 - replaced by two shorter strings with newly created quarks, anti-quarks on each side of the break
- High-energy strings then decay into hadrons according to fragmentation functions
 - fragmentation functions are theoretical distributions fitted to experiment
- The resulting hadrons can then interact with the nucleus in a traditional cascade

QGS Validation

FTF Validation

G4 Adding FTF Model to the Physics List (1)

G4TheoFSGenerator* heModel = new G4TheoFSGenerator("FTFP"); // model class that contains the sub-models

// Build the high energy string part of the interaction G4FTFModel* ftf = new G4FTFModel; // string interaction code G4ExcitedStringDecay* esdk = // string decay code new G4ExcitedStringDecay(new G4LundFragmentation);

ftf->SetFragmentationModel(esdk);
// assign decay code to model

heModel->SetHighEnergyGenerator(ftf); // assign string sub-model to high energy model

G4 Adding FTF Model to the Physics List (2)

intfce->SetDeExcitation(preco); // assign de-excitation models

heModel->SetTransport(intfce); // assign to high energy model

Capture Processes and Models

- G4PionMinusAbsorptionAtRest
 - process with direct implementation (no model class)
- G4PionMinusAbsorptionBertini **
 - at rest process implemented with Bertini cascade model
- G4KaonMinusAbsorption
 - at rest process with direct implementation
- G4AntiProtonAnnihilationAtRest
 - process with direct implementation
- G4FTFCaptureAtRest **
 - process implemented for anti-protons by FTF model
 - ** recommended
- G4MuonMinusCaptureAtRest
 - process with direct implementation (no model class)
- G4AntiNeutronAnnihilationAtRest
 - process with direct implementation
- G4HadronCaptureProcess
 - in-flight capture for neutrons
 - model implementations:
 - ♦G4NeutronHPCapture (below 20 MeV)

Workshop on Geant4 and its Application

Fission Processes and Models

- G4HadronFissionProcess can use two models
 - G4NeutronHPFission (specifically for neutrons below 20 MeV)
- A third model handles spontaneous fission as an inelastic process (rather than fission)
 - G4FissLib: Livermore Spontaneous Fission

Summary (I)

- Geant4 hadronic physics allows the user to choose how a physics process should be implemented
 - Cross-sections
 - models
- Many processes, models and cross-sections to choose from
 - The hadronic framework makes it easier for users to add more
- General hadron elastic scattering handled by G4WHadronElasticProcess
- Precompound models are available for low-energy nucleon projectiles and nuclear de-excitation
- Three intra-nuclear cascade models available to cover medium energies (up to 10 GeV)
 - Bertini-style, Binary cascade, INCL++
- There are specialized high-precision neutron models
 - HP models which use G4NDL, now based entirely on ENDF/B-VII
 - alternative LEND (Livermore) models are faster but currently less extensive use the ENDF.B-VII library

Summary (II)

- Several models for ion-ion collisions
 - Wilson models fast, but not so detailed
 - Binary light ion cascade is more detailed but slower
 - INCL++ ion cascade
 - QMD model is very detailed but not so fast
- Radioactive decay
 - handles decay of isotopes at rest and in flight
 - ENSDF database files required
- Gamma-nuclear and lepto-nuclear processes are available for nuclear reactions initiated by non-hadrons
- Two QCD string models are available for implementing high-energy interactions:
 - Fritiof (FTF): more versatile, covers many particle types, larger energy range
 - Quark-Gluon String (QGS)
- \bullet Several stopping processes and models are available for $\mu,\,\pi,\,\text{K},\,\text{anti-p},\,\text{anti-n}$
- Capture and fission (mostly for neutrons)

Workshop on Geant4 and its Application

Additional Slides

G4WilsonAbrasion and G4WilsonAblation

- A simplified macroscopic model of nucleus-nucleus collisions
 - based largely on geometric arguments
 - faster than Binary cascade or QMD models, but less detailed
- These two models are used together
 - G4WilsonAbrasion handles the initial collision in which a chunk of the target nucleus is gouged out by the projectile nucleus
 - G4WilsonAblation handles the de-excitation of the resulting fragments
- Based on the NUCFRG2 model (NASA TP 3533)
- Can be used up to 10 GeV/n

