Fast timing characteristics with 1.5"x1.5" CeBr₃ detectors

<u>Sneha Das</u> Variable Energy Cyclotron Centre(VECC), Kolkata <u>ICWIP2023</u> 8th International Conference on Women in Physics Online Mode 10-14 July 2023

Fast Timing Scintillators - CeBr₃ detector

New generation inorganic scintillator detectors (LaBr₃(Ce), CeBr₃) has opened up new horizon to measure the lifetime in sub-nanosecond range

 \Box CeBr₃ scintillators: emerged as potential alternative to LaBr₃(Ce)

- \checkmark Time resolution comparable to LaBr₃(Ce) (~ 100 300 ps for ⁶⁰Co)
- \checkmark Energy resolution slightly poor compared to LaBr₃(Ce) (~3% at 1332)
- ✓ No internal activity
- \checkmark Less costly compared to LaBr₃(Ce)

<u>At VECC</u> → 13 Nos. of 1.5"×1.5" CeBr₃ coupled with new Hamamatsu PMT R13089-100

Characterization and lifetime measurement using MSCD

Energy Response of 1.5"x1.5" CeBr₃ Detector

Time Response of $1.5^{\circ} \times 1.5^{\circ}$ CeBr₃ Detector

Mirror Symmetric Centroid Difference (MSCD) method

Lifetime of a state is the shift of delayed centroid from the corresponding prompt at that energy $\tau = C(D) - C(P)$

C(D)_{stop}: Delayed time distribution E_{feeder} (start) - E_{decay} (stop) C(D)_{start}: Antidelayed time distribution E_{decay} (start) - E_{feeder} (stop)

Centroid Difference:

$$\Delta C = C(D)_{stop} - C(D)_{start}$$

Prompt Response Difference: : PRD = C(P)_{stop} - C(P) _{start}

 $\Delta C = PRD + 2\tau$

Variation of time-walk response at different experimental set-up

At higher bias voltage, PRD fitted with:

$$PRD(E_{\gamma}) = \frac{a}{\sqrt{E_{\gamma}}} + bE_{\gamma} + cE_{\gamma}^{2} + d$$

lower energy time-walk responses improves at higher bias voltage and lower CFD delays.

40 keV point at lower energy only monitors the variation of the PRD curve.

For precise time-walk calibration at lower energy, more low energy points are required for PRD calibration.

Measurement of Lifetime of 11/2⁻ state of ²⁰⁹Po from decay ²⁰⁹Bi(α , 4n)²⁰⁹At @ 52 MeV Alpha beam from K-130 cyclotron at VECC, Kolkata. (Production cross section ~ 1500 mb) ²⁰⁹At $\rightarrow \epsilon$ decay (95.9%) T_{1/2} = 5.42 hr \rightarrow ²⁰⁹Po 350 9/2+ 195-239 239-195 300 $PRD(E_{\gamma}) = \frac{a}{\sqrt{E_{\gamma}}} + cE_{\gamma} + d.$ 790 **∆C**=162(4) ps Counts 13/2+ 250 102 239 200 11/2-HV= -1700 V (sd)024 195 10 100 9/2-782 50 37.0 36.5 35.0 35.5 36.0 37.5 38.0 CFD Delay 0.8 ns 0 Time (ns) 5/2 545 -50 0 200 400 600 800 1000 1200 1400 1/2-Energy(keV) 30 0.8 ns ²⁰⁹Po 20 10

(sd)u

0 -10 -20 5 -30

200

400

600

Energy(keV)

800

1000

1200

1400

(feeder, decay)	∆ C _{E×p}	ΔC_{corr}	τ _{11/2} -
(239,195)	162(4) ps	188(4) ps	98(6) ps

Summary

1.5"×1.5" CeBr₃ detectors coupled to new PMT Hamamatsu R13089-100

✓ MSCD technique with two 1.5"×1.5" detectors
✓ PRD calibration with ¹⁵²Eu

✓ Lifetime of 11/2⁻ state of ²⁰⁹Po following offline decay
✓ The result is in good agreement with a recently reported value.

References

 Soumik Bhattacharya, Sneha Das, et al. NIM A 1014, 165737(2021)
J.-M.Regis, et al., NIM A 684, 36 (2012)
J.-M. Régis et al., NIM A 955, 163258 (2020)
J.-M.Regis, et al., PRC 95,054319(2017)
Sneha Das et al ,JINST 17 P09012 (2022)
V. Karayonchev et al., PRC 103,044309(2021)

III THANK YOU III