Image: https://en.wikipedia.org/wiki/Bandra-Worli_Sea_Link Designed by Saurabh Sandilya

CKM2016

9th International Workshop on the CKM Unitarity Triangle TIFR, Mumbai Nov. 28 – Dec. 2, 2016 Experimental status of muon lepton flavor violation

Paolo W. Categori, FN Pa

Image: https://en.wikipedia.org/wiki/Ba Designed by Saurabh Sandilya

1.100

0.007.007

9th Interr on the CK TI Nov. 2

Image: https://en.wikipedia.org/wiki/Ba Designed by Saurabh Sandilya

Image: https://en.wikipedia.org/wiki/Bandra-Worli_Sea_Link Designed by Saurabh Sandilya

CKN2016 9th International Workshop

9th Interr

cLFV Experiments with $\mu^{\scriptscriptstyle +}$

- No theoretical uncertainties $Br_{SM} < 10^{-40}$
- No Standard Model background
- \bullet Large amount of μ available thanks to current high-power p machines
- Lower energy machine preferred to perform searches using stopped muons in most cases
- \bullet Normal μ decay modes well understood
- Sensitive to many BSM models.
 Able to discriminate between them

PSI DC μ^+ Beam

Injection Energy Extraction Energy Extraction Momentum Energy spread (FWHM) Beam Emittance Beam Current Accelerator Frequency Time Between Pulses Bunch Width Extraction Losses

72 MeV 590 MeV 1.2 GeV/c ca. 0.2 % ca. 2π mm×mrad 2.2 mA DC 50.63 MHz 19.75 ns ca. 0.3 ns ca. 0.03%

Pulsed Muon Beam Facility

- RIKEN-RAL muon facility
 - 800MeV-300µA, 50Hz
 - Surface μ : $1.5 \times 10 \mu/s$
- J-PARC MLF
 - 3GeV, 1MW (goal), 25Hz
 - Surface μ : > 3x10⁷ μ/s (as of 2016 Jan)
 - $3x10^8 \mu$ /s at H-Line (future)

J-PARC MLF H-Line

- Search for $\mu^+ \rightarrow e^+ \gamma$ using 3x10 ⁷Hz muon beam
- Data taken in in 2008-2013
- Data in 2009-2010 2.4x10⁻¹² @ 90% C.L. (S = 1.6x10⁻¹²) PRL 107 171801 (2011)
- Data in 2009-2011 5.7x10⁻¹³ @ 90% C.L. (S = 7.7x10⁻¹³) PRL 110 201801 (2013)
- Final upper limit published: 4.2×10^{-13} @ 90% C.L. (S = 5.3×10^{-13}) EPJC 76(8), 1-30
- Factor of 30 better than pre-MEG result 1.1x10⁻¹¹(MEGA)

MEG II

- Improve resolutions by about factor 2 everywhere:
 - p_e
 - Ε_γ
 - Θ_{eγ}
 - t_{eγ}
- μ beam rate of 7x10 ⁷ Hz
 to reach the sensitivity
 of 4x10 ⁻¹⁴
- Engineering run in 2017

MEG II LXe Upgrade

2" PMT UV-sensitive

- Replace 2-inch PMTs with VUV-SiPM to cover the front face
- 4000 SiPM with minimum material
- Installation completed begin 2017

MEG II Positron Spectrometer

- Drift chamber
 - Single volume, 2m long stereo wire & low mass
 - More hits provides better resolutions
 - $\sigma_{Ee} = 130 \text{keV}$, $\sigma_{angles} = 5 \text{mrad}$
- Timing counter
 - Pixelated plastic scintillators read by SiPM
 - Best resolutions σ =30ps anticipated for multiple counter hits events
- & Upgrade of Trigger / DAQ

Mu3e: μ →eee search with DC Muon Beam

Another channel sensitive to cLFV with DC muon beam

1.0x10⁻¹²(90% C.L.) by SINDRUM 1988!!

Goal : 10^{-16} in two steps Phase I in 2018-2020 Sensitivity: 10^{-15} Decay rate 10^8 Hz Phase II in >2020 Sensitivity: 10^{-16} Decay rate 10^9 Hz

Measure all low momentum electron tracks precisely without pile-up Most severe BG

$$\rightarrow$$

$$\mu^+ \rightarrow e^+ e^+ e^- \nu \nu$$

Mu3e: Detector Technology

NIM A 582 (2007) 876

High voltage monolithic active pixel sensors - Ivan Peri

- thinned down to $< 50 \ \mu m$
- Logic on chip: Output zero suppressed hit addresses and timestamps
- 5 generations of prototypes, MuPix7 is current generation with all features of final sensors

Mainz test beam in June 2016

Efficiency above 99%

MuPix6

Mu3e: Timing Measurement

- Precise timing measurement is critical to reduce accidental BGs
 - Scintillating fibers O(1nsec)
 - Scintillating tiles O(100psec)

µ-e conversion searches

Sensitivity limited by integrated rate not by resolution !! Existing limit 7.0x10⁻¹³(Au)

- J-PARC
 - DeeMe
 - COMET Phase-I & II
- FNAL
 - Mu2e

10⁻¹⁴-10⁻¹⁶ sensitivity

Experimental Techniques

DeeMe at J-PARC

- mu-e conversion search at J-PARC with a S.E.S. of 10^{-14}
 - Primary proton beam from RCS
 - 3GeV, 1MW
 - Pion production target as a muon stopping target
 - Beam line as a spectrometer
 - Kicker magnets to remove prompt background
 - Multi-purpose beam line for DeeMe, HFS, g-2/ EDM is under construction

Principle of Experiment

Sensitivity, Backgrounds

-18)

COMET at J-PARC

- Target S.E.S. 2.6x10⁻¹⁷
- Rate $1.3 \times 10^9 \,\mu/s$ (phase I) 5.0 $\times 10^9 \,\mu/s$ (phase II)
- Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulsepulse width
 - bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- Recently staging plan showed up. The collaboration is making an effort to start physics DAQ as early as possible under this.

COMET Detector

Straw Tracker

Cylindical Drift Chamber Cerenkov Trigger Todoscope

Electron CALorimeter

Mu2e at FNAL

- Target S.E.S. 2.0x10⁻¹⁷
- uses the antiproton accumulator/debuncher rings to manipulate proton beam bunches
- pion production target in a solenoid magnet
- S-shape muon transport to eliminate BG and sign-select
- Tracker and calorimeter to measure electrons

Mu2e detector

A single electron must be detected It is a straw tracker complemented by a CsI calorimeter

Muon Stopping Target Dependence

- DeeMe: C (& Si)
- COMET & Mu2e: Al
 - Ti in future?
 - Pb in far future ??

	Al	Ti
lifetime	864 ns	330 ns
time window	0.3	0.2
signal	1	1.5
net	0.3	0.3

of $\mu \rightarrow e$ conversion in nuclei

Summary

- cLFV experiments using muons
- MEG new result
 - Br(µ→eγ) < 4.2x10 $^{-13}$ @ 90% C.L.
- MEG II, DeeMe, COMET, Mu2e, Mu3e in preparation