
Plasmon-Exciton Interactions in 

Bilayers of Core-Shell Au-SiO2

Nanoparticles and FAPbI3 Perovskite 

Nanocrystals

Souzou Aliki1,2, Athanasiou Modestos1, Manoli Andreas1, Bodnarchuk Maryna I.4, Kovalenko Maksym V. 3,4, 

Andreou Chrysafis2 and Itskos Grigorios1

1Experimental Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, Nicosia 

1678, Cyprus

2Nanotechnology Imaging and Detection Laboratory, Department of Electrical and Computer Engineering, 

University of Cyprus, Nicosia 2112, Cyprus

3Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 
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Motivation

• Metal Halide Perovskites (MHPs): Outstanding optoelectronic materials, competing against

established semiconductors (silicon) mainly in solar cells, but also in other photonic

applications and devices

• Much of the early work performed on the prototype MHP material MAPbI3 but more recent work

focuses on FAPbI3-based structures due to its narrower bandgap and better thermal durability
I-
Pb2+

FA+

• FAPbI3 in the form of colloidal nanocrystals (NCs) shows increased structural integrity compared to bulk, due

to surface ligand coverage

• An issue associated with FAPbI3 is the drop of absorption coefficient above ~500 nm. In NCs absorption

reduces further due to a smaller density of states and a reduced solid state packing due to ligands

• An obvious solution is to use thicker FAPbI3 absorbers, but this leads to disorder and unfavourable competition

of the carrier extraction with non-radiative recombination

❖ Alternative approach in this work: Implement plasmonic AuSiO2 nanoparticles (NPs) of tunable core and shell

size to optimize near- and/or far field plasmon/light-exciton interaction and obtain enhanced light harvesting

efficiency



Synthesis of AuSiO2/FAPbI3 NPs of tunable core/shell size

• Synthesis of 15, 40 nm Au NPs based on

the modified Frens method [1][2]

• Growth of 60 and 80 nm Au NP [1]

• Core sizes of 17 ± 2, 58 ± 6, 83 ± 11 nm

with shell size ~ 20-25 nm

• Silication via the Stöber method with

various amounts of silica precursor [2][3]

• Shell sizes: 14 ± 4, 18 ± 3 and 26 ± 4 nm
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Fabrication of AuSiO2/FAPbI3 bilayers 

PMMA

Core-size dependent study:

• Drop-cast AuSiO2 NPs in ethanol on glass 

substrates and vacuum dry (thick layer)

• Spin-cast FAPbI3 NCs, followed by PMMA

Shell-size dependent study:

• Spin-cast AuSiO2 NPs in ethanol on poly-L-lysine 

coated glass substrates (thin layer)

• Spin-cast FAPbI3 NCs, followed by PMMA

FAPbI3 NCsAuSiO2 NPs 



Impact of Au core size on optical properties of AuSiO2/FAPbI3 bilayers

• Au NP size dependent enhancement of

extinction by the near and far-field

effects

• Emission enhancement which traces the

spectral variation of extinction spectra

• Strongest emission from the largest Au

NPs, due to combination of stronger

near-field coupling and more efficient far-

field scattering
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• Shell-size dependent extinction

enhancement, maximizing for the 18 nm

shell

• Emission enhances for all bilayers at off

resonance excitation (<500 nm), by far-

field interactions

• At on resonance excitation (>500 nm),

emission quenches for the smallest shell

size and enhances for the larger ones

• Emission enhancement maximizes at

the 18 nm shell consistent with

extinction enhancement and theoretical

predictions

Impact of silica shell size on optical properties of AuSiO2/FAPbI3 bilayers
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Plasmon-exciton interaction mechanisms

Core size study:

• Lengthening of lifetime with Au NP size implies

dominance of far-field effects (photon

recycling)

• High NP-NC separation distance due to film

thickness reduces near-field interaction

contribution

Shell size study:

• Quenching of lifetimes at on resonance

excitation implies dominance of near-field

effects due to small NP-NC separation distance

• Resonance energy transfer responsible for

emission/lifetime quenching at 14 nm shell size

• The Purcell effect responsible for the emission

enhancement and lifetime quenching at larger

shell sizes
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