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Introduction and motivation



QCD crossover

» Lattice QCD is the only rigorous technique we know to
compute the thermodynamics of QCD in the crossover region

» We know quantitatively from Lattice calculations that for
2 + 1 flavor, the transition from hadronic matter at low T to
the QGP at high T is a crossover around 145 — 165MeV
[Brookhaven/HotQCD, TIFR, Wuppertal-Budapest, Bielefeld,
collaborations]

» But it is challenging to compute transport properties on the
lattice

» Finite u is also challenging but significant progress made. For
eg. [Datta, Gavai, Gupta (TIFR group); HOTQCD; Bielefeld
group]
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Simpler theory for long range correlations?

» The chiral condensate (1)) — 0 in the chiral limit at the
critical temperature T.. For finite quark mass, mg, the
condensate drops rapidly near the crossover temperature T,

» If a quark description valid near the crossover then this implies
that the quarks are light near T,

» For finite mg, there could be other light degrees of freedom.
We assume here that there are none
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The NJL model

» Can one write a simpler effective model that captures the
correlations on length scales larger than 1/T7

> NJL is a simple, and widely studied EFT model that captures
the physics of the chiral crossover ([Nambu, Jona-Lasinio

(1961)])

> It can be justified on the assumption that quarks are light
degree of freedom near the crossover

> It captures qualitative features like a rapid rise in the pressure
and free energy near the crossover
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The NJL model

» The parameters of the model are fixed by using the vacuum
properties for example m mass, and 7 decay constant in
vacuum where it is not justified

» The interaction between quarks is typically taken to be of a
very specific form

L= N(0y)? + ($in°t7)?]

» Since the NJL model is not valid beyond energies of the order
of T, it is not appropriate to use it to calculate pressure,
energy density etc.

» From this point of view more natural to compare correlation
functions on length scales larger than 1/T
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Additional fields

v

Additional light fields can be introduced (eg. PNJL model
(See Rajarshi’s talk))

Taking the EFT the point of view all terms consistent with
symmetries upto a certain order should be added

v

v

Not appropriate to match thermodynamic properties but long
distance properties

v

Matching should be done near the crossover

43



Formalism



The Euclidean action
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» There are no dimension 5 terms (for eg. 1(3)%v) consistent
with the SU(2)a symmetry

» Dimension 6 terms with derivatives in the mean field
approximation ()31 have also been listed but don't play a
role in our calculation. This is because we make a mean field
approximation
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Symmetry constraints

» Time and space distinguished: SO(3,1) — SO(3). For
example, the kinetic term is

g + d*di

» Similarly, all vector interaction terms can have different spatial
and temporal coefficients

> All interaction terms with chiral symmetry written down upto
dimension 6
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Parameters of the theory

» Take the energy cutoff to be of the order of T or slightly
larger. We will use dim-reg with a renormalization scale
M~nzT

» Tj sets the scale of the overall problem

> mg = d3 Ty acts as the bare quark mass, but is not fitted to 7
massat T =0

» Seems hopeless, 12 unknown parameters
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Mean field approximation

>

But sectors of observables with only specific linear
combinations of d's emerge

For example, in the mean field approximation

&a@bﬁ — 60(,8 <7;Z_”/}>

T2 — _ _ o
Lyt = —Nﬁzz + Ydatp — pipyat) + d*Pdip + mepp + d° Ty
Including all the Fierz transformations (N = 12 for 2 flavor),

A= (N +2)d° —2d% — ¢ 4 3¢5 + d%° — 34%°
+d% — d +3d% — 3d%

m=mg+ %
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Parameters of the theory

» T, is the value for the critical point in the chiral limit. Take
the scale setting parameter To = T,

(@) _ 1
>N T 12
» Observables will be fit at one point below T,

v

Parameters mq = d3To, d*

v

M is the renormalization scale in the MS scheme

_Q_/\/'T0222+ Nm* | m? 3
T ax ean?(dhy | B\ (ahem2) T 2

NT o0 E
271'2(d4)3 /0 dpp2 log [1 + exp (_T>}

+
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Order parameter

» By minimizing the free energy we can find the order
parameter m

> In the plot the width is associated with varying
M e (1.257TTO, 1.757TTO)

m
[ &
08 09 1. 11_42—13To
-0.2 -
----- d® = 0.004
----- d3® =0.04
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Current correlations and screening masses

» Long distance behavior of the correlations of currents (for eg.
A = 1,!)7“7“51#) can be used to extract the screening
masses of various channels

» We first focus on the axial vector correlations in Euclidean
field theory so that we can match to lattice data
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Fluctuations of the order parameter

> In mean field ¥ot5 — <¢aﬂ/}a>
» Fluctuations ¢ — €™ 77"/ (2F)y), w — ™™’ /(2f)

» This includes the 7's in the Hubbard-Stratonovich
transformation

> Therefore, 1,105 — e ”T T /(Zf)w Da)e in 7375/(21“)
> At very long wavelengths an effective Iagrangian for the 7's is

applicable
2
> Lr = S50n% + 3(00m)? + (Va2 + Gt + -
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7 lagrangian

» We start with the two point function
> Lr= 002 4 Y(dom) + 5 (V)
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Correlation functions

v

Correlations of currents related to 7 properties

Two illustrative examples
imge o [ d*xe™(P2(x)PH(0)) = (55 )2

2mq 9?+M2
. - . . 6ab 2
limge_yo [ d*xe™(Jgi(x)JE1(0)) = ((21‘)2)c4q2+7\‘/l72r
M2 = ¢T3 /c* related to the screening length

Static ™ — 7 correlator decays as ~ e~ Mx"

u=1+/c*is the 7 “speed”

From a combination of the static correlators one can extract
fv C4r MTI'

[Brandt, Francis, Meyer, Robaina (2014)]
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Correlation functions

v

A finite temperature generalization of GOR relation is satisfied
2T = _Nm;gww
[Son, Stephanov (2002)]

» We can compute f, c¢*, M, in the EFT model and compare to
the lattice data

v

v

v

Because of approximate chiral symmetry, can show that the
same combination of d®'s determine 7 properties
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Interesting behaviour in the chiral limit

» mg — 0 implies M — 0. Well known from the Goldstone
theorem

> Interesting behaviour of ¢4 at T, in the chiral limit:

4 prdp 2 1 _
“x [ T ep(p/T) p T+ eop(p/T))
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Results
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Inputs

v

Matching v and M, at T =0.84T,

Error in T associated with T, = 211(5)MeV

Input from [Brandt, Francis, Meyer, Robaina (2014)] (figure
below). Heavy 7

Fitted values d® = 0.57[+6(input)] [+£3(scale) | [£3(T)],
d* = 1.20[+6(input) | [+4(scale)] [+(4)T]
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» Pion velocity

1
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M;
» Pion Debye screening mass

3.5

1-loop

lattice —B—

1.8.75 08 0.85 0.9 0.95 1
/T,

» Also see [Ishii et. al. (2013); S Cheng, S Datta et. al. (2011)]
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» Pion constant f

» An independent prediction

1
08| o
06/ ——E=L = s

e s s s s
04| -]

M/T=1.2n
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» The peak of the chiral susceptibility in the EFT model occurs
at Too = 1.24T,

» Taking Teo = 211(5), we get T, =170+ 6
» Larger than the value of T, from the lattice for 2 4 1 flavors

» However for 2 flavors this agrees with the lattice prediction
[Brandt et. al. (2013)]
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7 four point function
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C41

» Pion four point function

2
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Towards finite u

> If we use the standard modification H - H — ulN

» In dim-reg an interesting result that T.(u)? + %Mz =TZin
the chiral limit

> In particular, implies that for small p,
2
Te(n) = Te(0) — 305Gy + O(1?)
» T(0)k = %
» Thus the mean field prediction is roughly 5 — 10 times the

lattice prediction for 2 + 1 flavors [Bielefeld, HotQCD,
collaborations]

» Several corrections in the EFT required at finite u
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P.: a qualitative comment

» Pressure of the 7
_3(e’TR)? [ (c2T§)_§]
64n2(cH) 32 B a2 T )

d3 n
—3T/ (27:))3 log(1 — eE™/T)

Py =

» E™ = /c*p? + 2T¢

» If c* is small the pressure is large. Energetic cost is small
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P
» Rise in the pressure of the m because of the thermal piece
d3p .
3T [ ——log(1—ef"/T 1
| G o1 =) (1)
as u decreases
» Disclaimer: Not rigorous; a curiousity

10

P4
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Real time dynamics



Real time dynamics

» One interesting application of the formalism is to compute
real time quantities in the small frequency and small
momentum limit

» A plausible assumption is that this can be obtained from the
analytic continuation of the fermionic lagrangian

» The main change in analysis is that instead of the imaginary
time propagator, we use the real time propagator for the
fermions

i

[m = 2m6(p* + m?)ne(p°)(ip + m)]

> nF(E) exp E/T)+1
> Note that d* is hidden in the definitions, p = —p®y° + d*p'y/
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Real time dynamics

>

For example let us now consider (J2/(x)J2/(0)) with x in
Minkowski space

Using J53i o fOym? we obtain the following

At one loop order the diagrams are the same with the only
difference now that we need the real time propagators for the
fermions

The 7 propagation in real time formalism

f d*xe'? <7ra(X)7rb(0)>’fermionic continuation = A(qoyliﬁ
Compare to the rotation to imaginary time

. rsab
[ d*xe® (72 (x)7?(0)) | rcontinuation = Mﬁ

MP = \/g (This is what Sourendu called the kinetic mass)

Subtlety related to order of limits: can not use the static limit
where g% — 0 first

Preliminary results [Ongoing with S. Gupta]
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Pole mass of 7

Mz
T
4r
3L
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L T
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[ T
1 \
T
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Salient features

» The pole mass differs in the static and the dynamic limit

» The dynamic limit is relevant for transport properties like
conductivity, where limg_,g is taken before lim,,_o

> At one loop order there is no damping at small g. One needs
to go to three loops (in the fermions) to obtain m damping

36
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Conclusions

» The EFT based approach can be used to calculate long
distance correlation functions in both Euclidean and
Minkowski space

> In particular we analyze the modification of the 7w properties
near the crossover

» Qualitatively, note that the medium modification of the
properties of hadrons (7), in particular the reduction of the
“speed” u just below T,

» Can be used to calculate dynamical properties
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Backup slides



Screening mass of 7
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Speed of 7

u
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f of 7

~ =

1.0¢
0.8}

0.6 . AL

0.4}

41 /43



Outputs

» By fitting v and M, parameters we obtain the fermionic
parameters

» Uncertainty associated with M

» Different boxes associated with varying T, in the error band

> Useful if the fermionic parameters do not vary rapidly with T

0.70 -

0.65

0.60 +

ds3

0.55

0.50 +

0451
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Free energy expression

T dp m*+p?+(p*)?
b=y 2 G =)
pt=(2n+1)x T

3
= / (;T)p3(Ep + log[1 + exp(—E,/T)])

> E. — (d4)2p2+m2

> /0 =
4\2 p g2
satias |3 —10g( L) + o [ dpplog[L + exp(~Ep/ T)]
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