

On the theory prediction of R_K and R_{K^*}

Marzia Bordone 1605.07633 in collaboration with G.Isidori and A.Pattori Universität Zürich

CKM 2016, 29.11.2016

Lepton Flavour Universality

Lepton Flavour Universality: weak interactions do not distinguish between lepton families.

How do we test LFU?

We use ratios of semileptonic decays

- in the ratios hadronic uncertainties are lower
- we can easily compare different leptonic families

LFU ratios

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\overline{\nu})}{\mathcal{B}(B \to D^{(*)}\mu\overline{\nu})}$$

- Charged current
- au vs μ
- in the SM tree level process
- 4σ discrepancy

$$R_{K} = rac{\mathcal{B}(B o K \mu \mu)}{\mathcal{B}(B o K ee)}$$

- FCNC
- μ vs e
- in the SM arises at loop level
- 2.6σ discrepancy

LFU ratios

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\overline{\nu})}{\mathcal{B}(B \to D^{(*)}\mu\overline{\nu})}$$

- Charged current
- au vs μ
- in the SM tree level process
- 4σ discrepancy

${\it R}_{\it K} = rac{{\cal B}(B o {\it K} \mu \mu)}{{\cal B}(B o {\it Kee})}$

- FCNC
- μ vs e
- in the SM arises at loop level
- 2.6σ discrepancy

How do we explain the discrepancy?

- New particles, e.g. leptoquark, vector boson, heavy fermion, scalars
- Is the SM error completely under control?

LFU ratios

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\overline{\nu})}{\mathcal{B}(B \to D^{(*)}\mu\overline{\nu})}$$

- Charged current
- au vs μ
- in the SM tree level process
- 4σ discrepancy

$$R_{K} = rac{\mathcal{B}(B o K \mu \mu)}{\mathcal{B}(B o K ee)}$$

- FCNC
- μ vs e
- in the SM arises at loop level
- 2.6σ discrepancy

How do we explain the discrepancy?

- New particles, e.g. leptoquark, vector boson, heavy fermion, scalars
- Is the SM error completely under control?

LFU ratio - R_K



Average

$$R_{\kappa}^{\rm avg} = 0.785 \pm 0.080$$

LHCb [1406.6482]

$$\textit{R}_{\textit{K}}^{\rm LHCb} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

BaBar[SUSY 2016]

$$R_{\rm K}^{\rm BaBar}=0.64^{+0.39}_{-0.30}\pm0.06$$

Belle [0904.0770]

$$R_{K}^{
m BaBar} = 1.03 \pm 0.19 \pm 0.06$$

SM prediction

 $R_K^{
m th} = 1 \pm ??$

Theory prediction

$$R_{K} = 1.0000 \pm 0.0001 |_{[C.Bobeth,G.Hiller,G.Piranishvili]} \pm ??|_{ ext{QED}}$$

Which are the sources of possible contributions to R_K in $q^2 \subset [1,6] \mathrm{GeV}^2$ region?

- kinematics and form factor effects are small $\sim rac{m_\ell^2}{q^2}$
- naive estimation of QED corrections $\sim rac{lpha}{\pi} \log^2 \left(rac{m_\ell^2}{q^2}
 ight)$

[T.Huber, T.Hurt, E.Lunghi

T.Huber, E.Lunghi, M.Misiak, D.Wyler]

Can we trust the error?

semi-analytic calculation of radiative corrections

Theory prediction

$$R_{K} = 1.0000 \pm 0.0001 |_{[C.Bobeth,G.Hiller,G.Piranishvili]} \pm ??|_{ ext{QED}}$$

Which are the sources of possible contributions to R_K in $q^2 \subset [1, 6] \text{GeV}^2$ region?

- kinematics and form factor effects are small $\sim \frac{m_{\ell}^2}{q^2}$
- naive estimation of QED corrections $\sim rac{lpha}{\pi} \log^2\left(rac{m_\ell^2}{q^2}
 ight)$

[T.Huber,T.Hurt,E.Lunghi T.Huber.E.Lunghi.M.Misiak.D.Wvler]

$$\ell = e \Rightarrow 10\%$$

Can we trust the error?

semi-analytic calculation of radiative corrections

Calculation setup

- limit $m_\ell^2 \ll q^2$
- interested to extract log-enhanced terms $\sim \frac{\alpha}{\pi} \log \left(\frac{m_{\ell}^2}{q^2}\right)$ and $\sim \frac{\alpha}{\pi} \log^2 \left(\frac{m_{\ell}^2}{q^2}\right)$
 - since they depend on m_ℓ they can be the only terms responsible of LFU violation
 - can be extracted from term associated with collinear and soft divergences due to the photon emission
- neglect $\mathcal{O}(\alpha/\pi)$ finite corrections (~ 0.2%)
- radiation from meson leg is negligible (not log-enhanced)

Radiator function

 $\omega(x, x_{\ell})$: probability density function that a dilepton system retains a fraction \sqrt{x} of its original invariant mass q_0^2 after bremstrahlung

$$\omega(x, x_\ell) = \omega_1(x, x_\ell)\theta(1 - x - x_*) + \omega_2(x, x_\ell, x_*)\delta(1 - x)$$

ω₁: real emission

- $x = q^2/q_0^2$ • $x_\ell = m_\ell^2/q_0^2$
- x_{*}: IR regulator

Radiator function

 $\omega(x, x_{\ell})$: probability density function that a dilepton system retains a fraction \sqrt{x} of its original invariant mass q_0^2 after bremstrahlung

$$\omega(x, x_{\ell}) = \omega_1(x, x_{\ell})\theta(1 - x - x_*) + \omega_2(x, x_{\ell}, x_*)\delta(1 - x)$$

- ω₁: real emission
- ω₂: soft emission and virtual corrections, obtained from

$$\int_{2\mathsf{x}_\ell}^1 \mathrm{d}\mathsf{x} \,\, \omega(\mathsf{x},\mathsf{x}_\ell) = 1 + \mathcal{O}\left(\frac{\alpha}{\pi}\right)$$

• $x = q^2/q_0^2$

•
$$x_\ell = m_\ell^2/q_0^2$$

• x_{*}: IR regulator

Implementation of the radiator into the non radiative spectrum

Double-differential decay width

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} q_0^2 \mathrm{d} x} \left(B \to \mathcal{K} \ell \ell(\gamma) \right) = \mathcal{F}_{\mathcal{K}}^{(0)}(q_0^2) \omega(x, x_\ell)$$

 $\mathcal{F}_{\kappa}^{(0)}(q^2)$: non radiative spectrum of the decay $B \to K\ell\ell$ To obtain the radiative-spectrum we need to perform the following convolution

$$\mathcal{F}_{K}^{\ell}(q^{2}) = \int_{q^{2}}^{q^{2}_{0,\max}} \frac{\mathrm{d}q^{2}_{0}}{q^{2}_{0}} \ \mathcal{F}_{K}^{(0)}(q^{2}_{0}) \ \omega\left(\frac{q^{2}}{q^{2}_{0}},\frac{2m^{2}_{\ell}}{q^{2}_{0}}\right)$$

where the kinematical region of integration depends on experimental cuts, namely $m_B^{\rm rec}$

Modelling the J/Ψ

Non-radiative spectrum

$$\mathcal{F}_{K}^{(0)}(q^2) \propto \lambda^{3/2}(q^2) |f_+(q^2)|^2 \left[|a_9(q^2)|^2 + |a_{10}|^2
ight]$$

Non-perturbative spectrum

$$a_9(q^2)=a_9^{
m pert}+\kappa_\Psirac{q^2}{q^2-m_\Psi^2+im_\Psi\Gamma_\Psi}$$

- a_9^{pert} ensures the behaviour at low q^2 region
- BW reproduces the presence of J/Ψ , κ_{Ψ} normalised to $\mathcal{B}(B o KJ/\Psi)$
- relative phase between a_9^{pert} and BW doesn't affect the result
- we do not claim this is the "true" shape of the resonance, but still it is suitable toy to study the behaviour around the J/Ψ

Modelling the J/Ψ

Non-radiative spectrum

$$\mathcal{F}_{K}^{(0)}(q^2) \propto \lambda^{3/2}(q^2) |f_+(q^2)|^2 \left[|a_9(q^2)|^2 + |a_{10}|^2
ight]$$

Non-perturbative spectrum

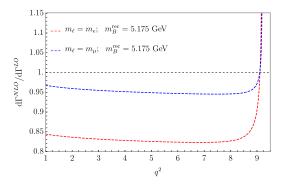
$$a_9(q^2)=a_9^{
m pert}+\kappa_\Psirac{q^2}{q^2-m_\Psi^2+im_\Psi\Gamma_\Psi}$$

- a_9^{pert} ensures the behaviour at low q^2 region
- BW reproduces the presence of J/Ψ , κ_{Ψ} normalised to ${\cal B}(B o KJ/\Psi)$
- relative phase between a_9^{pert} and BW doesn't affect the result
- we do not claim this is the "true" shape of the resonance, but still it is suitable toy to study the behaviour around the J/Ψ

Are we safely below the effects of the J/Ψ ?

J/Ψ tail

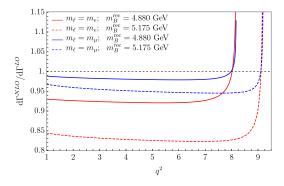
$m_B^{ m rec}$: reconstructed mass of the B meson from charged tracks



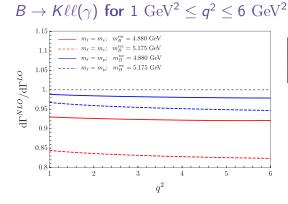
• Key-variable: $m_B^{\rm rec}$, that determines the size of the effect of radiation we need to take in account

J/Ψ tail

$m_B^{\rm rec}$: reconstructed mass of the B meson from charged tracks

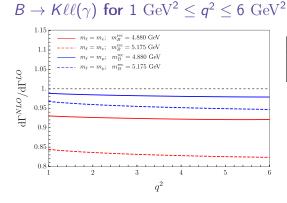


- Key-variable: $m_B^{\rm rec}$, that determines the size of the effect of radiation we need to take in account
- even with the looser cut $m_B^{\rm rec} = 4.880 \ {\rm GeV}$ the tail is safely above the interesting region [1, 6] ${\rm GeV}^2$



$m_B^{ m rec}$	$\ell = e$	$\ell = \mu$
$4.880~{ m GeV}$	-7.6%	-1.8%
$5.175 {\rm GeV}$	-16.9%	-4.6%

 radiative correction can be sizable



$m_B^{ m rec}$	$\ell = e$	$\ell = \mu$
4.880 GeV	-7.6%	-1.8%
$5.175~{ m GeV}$	-16.9%	-4.6%

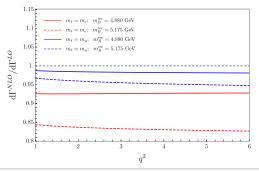
- radiative correction can be sizable
- due to the cuts applied in the analysis the overall effect is less important

estimate effect on R_{K} : $\Delta R_{K} = +3\%$

good agreement with PHOTOS up to a few ‰

Results for $B \to K^* \ell \ell(\gamma)$

Same story as for K...



$m_B^{ m rec}$	$\ell = e$	$\ell = \mu$
4.880 GeV	-7.3%	-1.7%
$5.175 \mathrm{GeV}$	-16.7%	-4.5%

- also in the K* case the effects can be potentially sizable
- if we use the same cuts implemented in the analysis for $B \rightarrow K\ell\ell$ we still are safe from J/Ψ tail and the overall effect of radiative correction is less important

•
$$\Delta R_{K^*} = 2.8\%$$

29.11.2016 On the theory prediction of R_K and R_{K^*}

Summary-Part I

- 1. Taking into account
 - low q^2 region $q^2 \subset [1,6] \mathrm{GeV}^2$
 - the cuts applied by LHCb analysis

$$R_{K_{[1,6]GeV^2}} = 1.00 \pm 0.01$$

- 2. In the region below the resonances J/Ψ
 - good agreement with PHOTOS

Summary-Part II

lf

the current measurement is confirmed

there is still space for new physics!