VHE measurements of the Crab nebula by HAGAR Telescopes B. B. Singh for HAGAR Collabor<u>ation</u> #### Introduction: The Crab Nebula - Remnant of supernova explosion occurred in 1054 and one of the best studied non-thermal astrophysical source - Pulsar at the center of the nebula injecting relativistic electrons to the nebula - Emission predominantly by non-thermal processes covering from radio to TeV energies - First TeV source detected by the Whipple telescope (1989) - Very strong and stable at TeV energy (standard candle) Fermi-LAT flare of April 2011 (Credit: NASA/DOE/Fermi LAT/R. Buehler) #### HAGAR: High Altitude Gamma Ray Observatory (Array of 7 Atmospheric Cherenkov Telescopes) #### **HAGAR**: Crab nebula observations Observations: ON-OFF mode (source followed by its background or vice versa) Signal: Comparison of cosmic-ray events from a gamma ray source region with similar cosmic-ray background region. Observation log (2008 – 2017) | | Number of ON/OFF | Duration (hours) | |-------------------|------------------|------------------| | Source | run pairs | | | Crab nebula | 241 | 219.0 | | Dark region | 108 | 97.5 | | Fixed angle | 98 | 46.1 | | Bright sky region | 26 | 24.8 | $$Signal = \frac{N_{on-source} - C * N_{off-source}}{duration}$$ Significance $$(\sigma) = \frac{N_{on-source} - C * N_{off-source}}{\sqrt{N_{on-source} + C^2 * N_{off-source}}}$$ ### **HAGAR**: Event/waveform analysis #### Acqiris: 8bit waveform digitizer | Parameter | Configuration | |-------------------|---------------| | Full scale (8bit) | 2000 mV | | Voffset | +875 mV | | Pre-trigger delay | 800 ns | | Sampling period | 1ns | | Samples | 1000 | NSB pulse amplitude (mV) 60 20 Number of observations ## HAGAR: gamma ray rate from Crab nebula direction ### **HAGAR**: Total signal from Crab nebula direction | Year | MJD | Runs | Duration | Average Event rate (Hz) | | γ-rate | Significance | $\frac{\sigma}{\sqrt{T}}$ | |---------|---------------|------|----------|-------------------------|------------------|-------------------|--------------|---------------------------| | | | | (hours) | ON-source | OFF-source | min ⁻¹ | N_{σ} | \ \frac{1}{2} | | 2009 | 55127 - 55188 | 18 | 11.2 | 7.54 ± 0.80 | 8.92 ± 1.04 | 6.13 ± 0.98 | 6.26 | 1.63 | | 2010 | 55500 - 55596 | 14 | 9.3 | 7.55 ± 1.18 | 9.40 ± 1.02 | 5.83 ± 1.14 | 5.09 | 1.63 | | 2011 | 55861 - 55976 | 14 | 9.2 | 7.85 ± 0.39 | 8.75 ± 0.84 | 4.09 ± 1.07 | 3.85 | 1.49 | | 2012 | 56299 - 56332 | 7 | 4.6 | 8.77 ± 0.53 | 9.97 ± 1.32 | 6.08 ± 1.78 | 3.41 | 1.76 | | 2013 | 56599 - 56714 | 27 | 26.6 | 8.41 ± 0.48 | 9.38 ± 0.62 | 4.45 ± 0.71 | 6.28 | 1.52 | | 2014 | 56956 - 57064 | 20 | 19.5 | 9.52 ± 0.57 | 10.66 ± 0.78 | 5.86 ± 0.89 | 6.55 | 1.44 | | 2015 | 57306 - 57456 | 55 | 55.7 | 7.54 ± 0.45 | 8.35 ± 0.61 | 4.64 ± 0.46 | 10.20 | 1.43 | | 2016 | 57663 - 57811 | 53 | 51.8 | 6.55 ± 0.31 | 7.03 ± 0.48 | 3.86 ± 0.43 | 8.97 | 1.19 | | 2017 | 58043 - 58112 | 33 | 31.1 | 6.74 ± 1.15 | 7.21 ± 1.80 | 4.43 ± 0.56 | 7.91 | 1.37 | | Average | All data | 241 | 219.0 | 7.47 ± 1.08 | 8.35 ± 1.36 | 4.64 ± 0.23 | 20.30 | 1.24 | # **HAGAR**: systematic measurement | | Dark region | Fixed aligie | |---|-------------|--------------| | Runs (N) | 108 | 98 | | Average Event rate (Hz) | 7.99±1.31 | 9.49±2.17 | | Excess/deficit rate (minute ⁻¹) | 0.01±0.37 | -0.02±0.62 | | σ | 3.43 | 3.84 | | Error on mean $(\frac{\sigma}{\sqrt{N}})$ | 0.33 | 0.39 | #### **HAGAR**: Crab nebula measurement - VHE photons of energies greater than 230 GeV from the Crab nebula was detected by the HAGAR telescopes. - Statistical significance of 20σ over the observation period of 219 hours spanning nine years. - The measured flux agree with MAGIC and Whipple telescopes. - The systematic error in the estimated gamma ray rate is less than 3%. - Measurement from the dark regions devoid of any known gamma ray source indicate that normalization can efficiently equalize cosmic ray events in the ON-OFF run pairs.