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Why the chiral fermions are so interesting?

The chirality of fermions play a crucial role in myriad of physical
processes from the early universe to material science.
Exotic transport properties like Chiral Magnetic effect!
[Kharzeev, McLerran, Warringa, 07]

In QCD, it is responsible for very light pions

Quantum anomalies in the chiral sector of QCD decide also the order
of the phase transition. [Pisarski & Wilczek, 83]

It was the first assignment given by Rajiv when I started to learn
lattice gauge theory from him.
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Why the chiral fermions are so interesting?

Defining chiral non-Abelian Gauge theories on the lattice is notoriously
difficult. Still unsolved!

Even formulating vector theories like QCD with fermions having exact chiral
symmetry on the lattice was a challenging problem.

It took 20 yrs since the discovery of Wilson fermions to develop domain
wall [Kaplan, 92] and overlap [Narayanan & Neuberger, 93] fermions.

Rajiv was deeply worried about how to incorporate µB in a manner that
DW/OV fermions maintain their exact chiral properties on the lattice.

Through couple of years of struggles and new revelations we now know how
to do it! [Gavai & S.S., Phys. Lett. B. 716, 2012, Narayanan and S.S. JHEP 2011. ]

Thanks to Rajiv all these years have been very exciting for me!
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Why the chiral fermions are so interesting?

Overlap fermions has an index theorem even on a finite lattice → it’s zero
modes can track the topological constituents of QCD.

Using them to probe the topology in gauge theories revealed onset of a
dilute gas of instantons quite early ∼ 1.1 Td !
[Edwards, Heller & Narayanan, 98, 99, Gavai & Gupta 02]

For QCD, though the zero and near-zero modes survive quite longer into the
chiral-symmetry restored phase.
[Chandrasekharan & Christ 96, Gavai & Gupta, 08, P. Hegde et. al., HotQCD coll. 2012, H. Ohno et. al., 12]

How do the low-lying eigenvalues of QCD Dirac operator look?
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Microscopics of QCD!
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Peak appears in the continuum limit!

Staggered eigenvalues@HotQCD

Absence of chiral symmetry and index washes out minute structures!
Recovered only in the continuum! @HotQCD, 16
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A small peak of near-zero modes observed above Tc

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee, S.S., 16].
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What do topological fluctuations tell us?

Topological susceptibility χt = T < Q2 > /V measures the
topological fluctuations of QCD vacuum.

Characterizing, χ
1/4
t (T ) = (c0 + c2 · a2) · (Tc/T )b+..

[Petreczky, Schadler, S.S., PLB 16].

Abrupt change in slope b=1.496(73)

b=1.85(15) Dilute Instanton gas

[See also Borsanyi et. al, Nature 16, C. Bonati et. al., 16, F. Burger et. al, 18 ]
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Higher moments of topological fluctuations

A better observable:
< Q4 > −3 < Q2 >2

< Q2 >

At T = 0 QCD consistent with χPT prediction of χt [Villadoro et. al, 15].
Departure from χPT expectations but a slow rise towards DIG & Tc →
residual interactions between instantons or different topological d.o.f?
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Understanding the topological constituents?

Instantons were shown to cause color-confinement in 3D [Polyakov, 77].

In 4D the potential is not long-ranged to ensure confinement.

Interacting instantons explains many properties related to chiral symmetry
breaking. [Shuryak, 82, Shuryak & Schaefer 96].

Why are confinement and chiral symmetry breaking so intimately connected
in QCD?

At finite T , instantons characterized by the holonomy and Q.
[Gross, Pisarski, Yaffe, 83].

Immediately above Tc , a range of temperature where the Polyakov loop has
non-trivial eigenvalues.
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Topology at finite temperature

Instantons with a non-trivial holonomy → dyons with non-trivial color
electric +magnetic charges. [Kraan & van Baal, 98, Lee & Lu, 98].

For SU(Nc) color there are Nc such dyons.

Topological charge = 1/Nc of the host-instanton.

Dyons can directly interact with the holonomy potential. It can drive
towards the confining values? [Diakonov, 2006]

Just above Tc there is a region where the holonomy is still non-trivial!

Do dyons really exist ? Yes several evidences!
[Garcia-Perez et. al., 99, Gattringer, 02, Ilgenfritz, Mueller-Preussker et. al., 13, 15].
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How robust is the identification of the dyons

Can we identify different species of dyons in the hot QCD medium.

How do different species of dyons interact?

Can there be a semi-classical description of dyons?
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Dyon-zero modes in SU(3)

Holonomy L = 1
3Tre

idiag(µ1,µ2,µ3) → the ith dyon action is
characterized by µi+1 − µi .
The zero mode of Dirac operator with b.c ψ(t + β) = eiφψ(t) have a
normalizable solution for ith-dyon background if φ ε [µi+1 − µi ]
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Dyon zero modes in SU(3)

The density at any spacetime point x is:

ρ(x) = − 1

4π2
∂2
µfx(φ, φ) ,

where[(
1

i
∂φ − τ

)2

+ r2(x , φ) +
3∑

m=1

δ(φ− µm)
|xm − xm+1|

2π

]
fx(φ, φ′) = δ(φ−φ′) .

distances between center of the m-th and (m + 1)-th dyon given as
xm − xm+1 where m = 1, 2, 3.

r2(x , φ) = r2
m(x), φ ∈ [µm, µm+1] is the distance between the

observation point x and the center of the m-th dyon.
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Snapshot of QCD vacuum at ∼ 1.1Tc

Angle=π

Angle=−π/3
Angle=+π/3

Peak position shifts with angle → dyons

R. Larsen, S.S., E. Shuryak, Phys. Lett. B. 794, 2019, and in prep.
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Snapshot of QCD vacuum at ∼ 1.1Tc

Angle=−π/3,−π/3, π

The fermion zero modes insensitive to temporal periodicity phase → Dyon
or caloron? R. Larsen, S.S., E. Shuryak, Phys. Lett. B. 794, 2019, and in prep..
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Comparing with the semiclassical theory

Analytic solutions of the dyons are known [Kraan & van Baal, Lee and Lu, 98].
Choose an initial value of Polyakov loop and locate diff. dyons at the
positions of the lattice zero modes → Fit it to analytic profiles assuming
weakly interacting ensemble R. Larsen, S.S., E. Shuryak, Phys. Lett. B. , and in prep.
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What do the near-zero modes tell us?

L-dyon-pairs are rarer and only those which are near-by appear at
high T as expected.
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What do the near-zero modes tell us?

M-dyons appear for all separations!
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What do the near-zero modes tell us?
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How robust are the zero-modes

L-dyons do not change after smearing

Smearing removes UV fluc. but not the zero-mode
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Characterizing the dyons

●

●

● ●

▲
▲

▲ ▲

● M1-M2

▲ L-M

1.00 1.05 1.10 1.15 1.20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T/TC

D
is
ta
nc
e
[fm

]

Very different from dilute Inst. gas

M-dyons are further apart

L-dyons go far-apart at high T!

R. Larsen, S.S., E. Shuryak, in prep.
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Summary

We have shown that the use of chiral fermions allow us to
unambiguously distinguish between a dyon and a caloron.

We understand their interactions and can reproduce the holonomy.

For temperatures just above the crossover transition we find a good
agreement with the semi-classical theory of dyons within 10− 20% .

Need to develop techniques to measure the densities and thermal
distributions of different dyon species.

Understand how the dyon pictures goes over to high-T 3D confining
theories
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