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“Non-physical” ranges
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It’s frequent to get confused about the ranges for the confidence band 
construction. 


Example: meaurement of a small mass m. 
using a Gaussian p(x|m) with x observed 
mass.


Keep distinct 


• data x which, due to resolution, could 
fluctuate negative


• the mass parameter m, for which 
negative values do not exist in the model

[Cousins]

Observed 
mass can 
fluctuate 
negative 

Model parameter mass 
cannot fluctuate negative



Ordering
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The ordering algorithm is arbitrarily chosen, provided that (i) has been defined 
prior to look at the data (ii) for each value m of the parameter, the integral of the 
pdf along the x region outside of the belt does not exceed 1-CL. 

m

m0

m2

Z

x/2 belt
p(x|m2)dx  0.05

[Cranmer]



Probability ordering
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In the past, many tried to get the shortest possible interval, so that the resulting 
confidence intervals were likely narrower yielding more precise measurements. (this is 
the probability ordering or “Crow-Gardner ordering”)

p(x|m0)

This is ill-defined: as probability depends on the metric for the observable x, the 
shortest interval in one metric isn’t shortest in others.

1. Choose one value for m, m0, and look at p(x|m0)


2. Rank the x values in decreasing order of p(x|m0)


3. Accumulate x starting from the x with highest probability


4. Accumulate all other x until the desired CL is reached.


5. Repeat for all m



Issues
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Central 90% CL band for a 
Gaussian of unit width

Central 90% CL band for a 
Poisson with unknown mean 

and background b=0.3

 The resulting confidence regions are empty, which is clearly indicative of a problem.  

Long-standing inconsistencies found in Neyman constructions based on 
simplistic ordering criteria (i) Gaussian measurement resolution near a physical 
boundary (e.g., like a measurement of neutrino mass square close to zero)  (ii) 
measurements of a Poisson signal in the presence of background when 
observed number of events fluctuates below the expected background count.

What if one 
observes         
x = -1.8?              
or n = 0?Observed Observed



Likelihood-ratio ordering (“Feldman and Cousins”)

Those issues were solved by adapting another ordering, 
based on the likelihood ratio

m

m2

m1

m0

p(x|m)

The “accumulation score” of each element in x, no longer depends only on p(x|
m0) but also on p(x|m) at other m values 

LR =
p(x|m0)

p(x|m̂)

x

p(x|m0)

p(x|m̂)

Choose a value m0 of the parameter 
and for each x calculate

[Cranmer]



Likelihood-ratio ordering
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1. Choose one value for m, m0  and generate simulated pseudodata accordingly.


2. For each observation x calculate (i) the value of the likelihood at m0, p(x|m0)=L(m0) and (ii) the 
maximum likelihood L(m̂) over the space of m values (for that observation)


3. Rank all x in decreasing order of likelihood ratio LR=Lx(m0)/Lx(m̂).


4. Accumulate starting from the x with higher LR until the desired CL is reached.


5. Repeat for all m

As the likelihood is metric-invariant so is the ratio of likelihoods. Therefore LR-
ordering preserves the metric, mostly avoids empty confidence regions and has 
several other attractive features. By far the most popular ordering in HEP. 


Take LR-ordering as default option unless there are strong motivations against it. 



Likelihood-ratio ordering practice
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It is instructive to trying to reproduce LR bands as per the original paper. http://
arxiv.org/pdf/physics/9711021v2.pdf. Further useful and interesting info in 
http://users.physics.harvard.edu/~feldman/Journeys.pdf 


Observed 
count

Likelihood ratio 
L(μ =0.5)/L(μ̂ )        
(ordering score)

Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php

L(μ =0.5) 
of  

observed 
count

μ̂  that  
maximizes L 
of observed 

count

L(μ̂ )        
of  

observed 
count

http://arxiv.org/pdf/physics/9711021v2.pdf
http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf


Real life — high dimensions
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In most real problems likelihoods are complicated multidimensional functions 
that cannot be analytically maximized. Two main issues:

Constructing confidence intervals is a significant computing 
burden: for each test value of the parameter m, (i) generate 
many samples of pseudodata, (ii) fit, and (iii) then move to 
another m value etc.. Diverges quickly with dimensionality 

With highly-dimensional likelihoods the “projection” of the full-dimensional 
confidence band into the lower-dimensional subspace of interest leads to 
information loss: structure in the full dimensional space is lost when projected.                                                                                                                      
The resulting confidence interval is bigger (less precise results).



Real life — nuisance parameters
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In most problems, systematic uncertainties complicate the interval determination 
Neither Neyman nor Feldman-Cousins have a prescription for that. 


Parametrize the uncertainty in the shape of the model by unknown nuisance 
parameters. Not interesting for the measurement but do influence the result.


Cannot define a pdf for s (otherwise s would be part of the model) but just a 
range. Goal: a procedure that guarantees coverage whatever is the value of the 
nuisance parameters within such ranges


Rigorous frequentist confidence intervals in the presence of nuisance parameters 
is a complicated problem for which no universal prescription yet exists.

p(~x|~m) ) p(~x|~m,~s)

Assumed model Reality

Nuisance 
parameters of 

unknown values 
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A promising approach: profile-likelihood-ratio (PLR) ordering.


FC ratio-ordering applied to likelihoods profiled (i.e., maximized) with respect to 
the uninteresting parameters.  The profile-likelihood is not a likelihood. It is a lower-
dimensional derivation of it obtained by maximizing the likelihood wrt to the 
nuisance parameters. However, it preserves some of the nice features of the 
likelihood ratio: its asymptotic distribution is known and independent of m

Profile-likelihood ratio ordering

Variable Meaning
m Parameters of interest (”physics parameters”)
s Nuisance parameters
m̂, ŝ Parameters that maximize L(x|m, s)
ŝ⇤ Parameter that maximizes L(x|m = m0, s)

PLR = L(x|m=m0,ŝ
⇤)

L(x|m̂,ŝ)
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In practice

1. Choose one value m0 for m and one value s0  for s, and generate pseudodata x accordingly


2. For each sample x (i) maximize p(x|m=m0,s)=L(m=m0,s) with respect to s to get L(m=m0,ŝ*) and 
(ii) maximize the likelihood L(m,s) over the space of m and s to obtain L(m̂,ŝ)


3. Rank all x in decreasing order of profile likelihood ratio PLR=L(m=m0,ŝ*)/L(m̂,ŝ)


4. Start from the x with higher PLR and accumulate the others until the desired CL is reached.


5. Repeat for all values of m


6. [Repeat for values of s sampled in their whole range of existence]

Generate pseudodata that sample the full multidimensional space of the parameters.  
fitt each sample twice, one with all parameters (physics and nuisance) floating, and 
another one with physics parameters fixed to their test value m0.  

Step 6 is essential to ensure the procedure has coverage for all values of the 
nuisance parameters.                                                                                    
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How to treat nuisance parameters in generation?

Step 6 is essential to ensure coverage for all values of the nuisance parameters: this 
is the “supremum p-value method”  (used by the CKMfitter group on combination of 
the measurements for CKM angle gamma up tyo 2010.) Can be expensive. 


Sometimes circumvented using the “plugin method”: only generate pseudodata at 
the s values estimated on data. Equivalent to assume that the true values of the 
nuisance parameters are exactly those measured in data. Likely to be an optimistic 
assumption that spoils coverage.


Midway between plugin and supremum: generate pseudata at s⃗ values sampled in 
a plausible subvolume centered on their estimates in data. Berger and Boos: 
sample along each dimension si  a range around the estimated value ŝ with CL 
much larger than the target CL of the profile-likelihood interval. (e.g, when 
constructing a 68% CL band in m, sample a 99.7% CL range in each dimension in s 
space) JASA, 89, 427 (1994)
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Application of the Berger-Boos method
27-dimensional case


https://arxiv.org/pdf/0810.3229.pdf      


Phys. Rev. Lett 100 161802,                                                 
Phys Rev D 85, 072002                                                        
Phys. Rev. Lett. 109, 171802,                                                

Comprehensive review of treatment of nuisance parameters: Sec 4 in www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf

https://arxiv.org/pdf/0810.3229.pdf
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The main burden

By this point you probably have realized that in a confidence interval 
construction, most of the time and effort is spent in generating a fitting simulated 
data sampled from p(x|m).  Effort and the time needed when likelihoods are 
highly multidimensional can be disconcerting.


Any way of avoiding this?



16

Wilks' theorem
Asymptotically (large N), the distribution of the likelihood ratio


approaches a χ² distribution with # of degrees of freedom equal 
to # of additional free parameters in the denominator wrt the 
numerator Samuel S. Wilks (1906-1964)


This holds independently of the shape of p(x|m) and on the value of m.


Great helps in usage of  likelihood- and profile-likelihood-ratio as ordering quantities 
in the construction of intervals. If the likelihood is regular enough to be in asymptotic 
regime, one can avoid massive production of simulated experiments.

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
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Wilks' theorem

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)

1 additional parameter in p(x|m) wrt to p(x|m0)

2 additional parameters in p(x|m) wrt to p(x|m0)

3 additional parameters in p(x|m) wrt to p(x|m0)
4 additional parameters

5 additional parameters

How do I know if L is asymptotic? Look at a few samples of pseudodata, and 
compare with curves above.

No need to generate the sampling 
distributions of the ordering 
statistic (that is, no need to 
generate toys)


Just look at where the (profile)-
likelihood ratio observed in my 
data falls along the appropriate 
curve (determined by the number 
of degrees of freedom)
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Wilks' theorem at work — MINOS

When L(m0,ŝm)/L(m̂,ŝ) equals the threshold values 
tabulated from the χ² distribution the 
corresponding projection of the profile-likelihood 
onto the m space approximates (large N) a 
Feldman-Cousins central confidence interval 

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
= �

�
�

CL
CL

“projection” onto the space of parameters of a 3-dimensional 
likelihood at the point where -2lnLR varies by 6.25 units 

identifies a 3-dimensional 90%CL central interval

“projection” onto the space of parameters of a 1(2)-
dimensional likelihood at the point where -2lnLR varies by 1.0 
units identifies a 1(2)-dimensional 68(39)% CL central interval

Moves down from the maximum L(m̂,ŝ) evaluating L(m0,ŝm) at each point m0 by 
maximizing wrt parameters s⃗ (i.e., likelihood of m profiled wrt s⃗).          



19

The Asimov asymptotic formulas
Significant recent breakthrough allows generalizing the Wilks theorem and 
provides key asymptotic formulas for the distributions of profile likelihood ratios 
used in confidence intervals and hypothesis tests.



Hypothesis testing

20
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Are my data compatible with background?
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Or they suggest the presence of a signal?

The p-value is a random variable that helps answering this question                                                                    
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/

http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Ingredients (prepare prior to any observation)
1. Need two hypotheses. For instance: only known phenomena contribute“null” or 
“background” ) new phenomena contribute too (“alternate” or “signal”)

2. Need a function x of the data (e.g., signal-event count), whose distribution 
under the null p(x|b) “departs” from that under the signal hypothesis p(x|s+b).  


3. Generate these two distributions (typically done using simulation) 


3. Set, prior to the observation, the false-positive rate: how much “signal-like” the 
observed value of x should be to exclude the background only hypothesis. 

Arbitrary function x of the data that allows separating between the two hypotheses

Di
st

rib
ut

io
n 

of
 x p(x|b) p(x|s+b)

Observation
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p-values for discovering a new effect
Observe xobs. The location of xobs  relative to the two pdf offers a quantitative 
measure of data compatibility with either hypotheses.


p-value: relative fraction of the integral of the null model over values of x as signal-
like as those observed and more. The smaller the p-value, the stronger the 
evidence against the null hypothesis. If p-value < false-positive rate, exclude the 
background-only hypothesis at CL = 1-(p-value).

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobsp(x|b) p(x|s+b)

p-value of the data 
with respect to the 

null hypothesis 
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p-values for excluding a new effect
If the purpose is to exclude a new effect, then one tests the signal hypothesis, and 
quotes the p-value with respect to that.


Is the relative fraction of the integral of the signal model over values of x as 
background-like as that observed and more. The smaller the p-value, the stronger 
the evidence against the signal hypothesis.

Arbitrary function x of the data that allows for separation between the two hypotheses

Di
st

rib
ut

io
n 

of
 x xobs p(x|s+b)p(x|b)

p-value of the data with respect 
to the signal hypothesis 
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This is Popperian testing

Cannot prove that an hypothesis is true, only that it’s false.


“Discover” a signal by excluding its absence (that is, by excluding 
that only background contributes).  Limit to the existence of a signal 
by excluding is presence.


Karl Popper (1902-1994)

A p-value is not a probability. It is a random variable (function of the data) that is 
distributed uniformly if the tested hypothesis is true.


It does not express the probability that an hypothesis is true or false!                  
Wrong claim “The measurement shows that the probability for hypothesis blah is ..”                                                                                                                             


P-values connect to the probability to observe xobs or a more extreme value if a 
specific hypothesis were true. Proper claim: “Assuming that the hypothesis blah 
holds, the probability to observe a fluctuation as extreme as that observed in our 
data or more is…”
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Nomenclature recap

This is x, 
whatever 

function of 
data whose 
distribution 
is sensitive 
to separate 
H0 from H1

x

This is p(x|b), the distribution of x under the 
null hypothesis

This is p(x|s+b), the distribution of x under the 
signal hypothesis

Symbol Meaning
↵ Rate of false positives (Type I error: reject H0, while it was true)
� Rate of false negatives (Type II error: reject H1, while it was true)

1� � Power of the test

Bckg like observation Signal like observation
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“Significance”
“At how many sigma such and such result is significant?” 


The “number of sigma” (or z-value) is just a remapping of p-values into integrals of 
one tail of a Gaussian.  It expresses by how many sigma from the mean my 
observation would be if the test statistic x would be distributed as Gaussian

[Cowan]
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p-values in mass peak
Suppose you measure a value x for each 
event and bin the resulting distribution.


The count in each bin is a Poisson 
random variable, whose mean in the H0 
hypothesis is given by the dashed line


Observe a peak of 11 events in the 
central bins, with expected background 
3.2 events.

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5*10-4


Is this evaluation fair or biased?
[Cowan]
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“Local” p-value and “look-elsewhere effect” 

That evaluation only accounts for the chances of a 
upward fluctuation in that very position at x~9.  
That’s the “local p-value”. 


“global p-value” need to account for the chances 
that an excess could have arisen in any pair of 
adjacent bins.  With 20 bins (10 pairs of adjacent 
bins) the local p-value gets multiplied by ≈10.

The larger the size of the test space, the higher the probabilities to observe rare 
fluctuations. 


When quoting p-values, need to correct for the effect of multiple testing (i.e., 
account that we have also been “looking elsewhere” from where the anomaly is). 


Use simulation, or approximate correction factors, e.g., in EPJ C70, 525 (2010)

Peak could have been 
observed here

..or here



31

The conventional “5σ rationale”

HEP experimenters conventionally agree to deal with the LEE by setting a rather 
extreme standard for p-values to justify claims of new effects. (Originated by a 
survey of experimental results on “far-out hadrons” in 1968 — see backup)


One requires the null to be rejected with significance of 3.5σ (for “evidence”) and 
5σ (“observation”), corresponding to very small p-values (fluctuations that occur 3 
times every 10 million trials). 


The loose rationale is that such high thresholds should protect from the effects 
above. 


However, one-size-fits-all does not seem appropriate here.



Which function x to choose?
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Back to p-values. 


Can we exploit the arbitrariness in choosing the 
test quantity x?  Can we devise a function of the 
observables x that maximizes the power of my 
test at fixed false-positive rate. 


Pretty obvious in simple counting experiments. 
Less obvious in multiple-dimensional nonlinear 
problems



Neyman-Pearson lemma
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It does exist an universal statistic for optimal separation 
between the two hypotheses (for simple completely 
specified hypotheses)


Ratio between the likelihood for the signal+background 
hypothesis (H1) and the likelihood for the background-only 
hypothesis (H0) Jerzy Neyman 

(1894-1981)
Egon S. Pearson 

(1885-1980)

p(x|H1

p(x|H0)
> k↵

The region W of acceptance of the null which minimises the probability to accept 
the null when the signal hypothesis is true is the contour


Any region that has the same false-positive rate would have higher rate of false 
negatives (technically, less power)



NP-lemma illustrated proof 
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Take a contour of the likelihood ratio that has a given rate α of false positives, that is 
a given probability under H0

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]

p(x|b) p(x|s+b)p(x|b)p(x|b)

W

p(x|b) p(x|s+b)p(x|b)p(x|b)

Wc



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



NP-lemma illustration 
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Because the region gained with the new contour was outside of the likelihood ratio 
contour and the region lost lost was inside it, the hierarchy between probabilities 
under H0 and H1 in the two regions is inverted.
Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



(profile) likelihood-ratio as a test statistic
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Convenient because (1) has optimal performance and (2) allows for testing with no 
need to laboriously construct distributions by generating and fitting pseudodata 
since its large-sample distribution is known (χ²)

1. Fit data under H0: i.e. with a likelihood 
that only has “background” parameters.


2. Fit data under H1: i.e. with a likelihood 
that includes n additional “signal” free 
parameters


3. The ratio between the resulting values of 
the likelihood functions at their maxima 
is distributed as a χ² with n degrees of 
freedom.


4. Comparison of the ratio obtained in 
data with the relevant χ² distribution 
allows for testing H1 vs H0.

χ²
LR observed in data

fit under H0fit under H1

[Cranmer]



Issues with p-values
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Possible to get an observation 
that rejects both the null and the 

signal hypotheses

For small signals with poor S-vs-B 
separation, sensitivity is low, which 

means that distributions of test statistics 
are nearly equal. Can make no statement 

about the signal, regardless of the 
outcome[Junk]

x x

p(x|s+b)p(x|b)



Spurious exclusion
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signal-like bckg-like

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

Use the likelihood ratio x to test the presence 
of a signal p(x|s+b).


Typically, if p-value of the hypothesis s+b is 
smaller than 5%, signal gets excluded with 
95% CL.


However, when the distributions of the test 
statistic are similar, (1-pvalue) of the 
background hypothesis is just marginally 
higher than p-value of s+b. x



The CLs method
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signal-like bckg-like
Scaling the p-value prevents from excluding 
hypotheses to which there is no sensitivity.


Base test on the pvalue for the s+b hypothesis 
scaled by (1-pvalue of b). Exclude only if 


CLs = [pvalue for s+b] / [1 - pvalue of b]


is small. Denominator increases the CLs thus 
preventing excluding signals for which there is 
no sensitivity.

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

When quoting limits, it’s good practice to assess the analysis sensitivity in terms of 
median expected limits based on ensembles of simulated experiments or asymptotic 
formulae if applicable to your case 

x



Duality
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

Given an ordering, there is a one-to-one correspondence between hypothesis 
testing and construction of confidence intervals.


It is the same problem.


Testying if parameter m equals m0 or rather any other value, with a chosen 
false-positive rate = pvalue, corresponds to checking if m0  is included in the 
confidence interval for m with CL=1-(pvalue) 


Subtends why the likelihood-ratio based ordering of Feldman and Cousins is a 
generalized and powerful criterion for construction of confidence intervals, 
thansk to the NP-lemma.




What?

43

Giving computers the ability to learn without explicitly programming them


Use statistics, mathematics, and computer science to determine mathematical 
models, learned from data, that capture the patterns and relationships between 
the features of the data.


Formulated around the 1950ies. 


Currently rapidly evolving, driven by many relevant applications in language 
processing, speech and handwritring recognition, vision, computer vision, fraud 
detection, financial markets analysis, search engines, spam/virus detection, 
medical diagnosis, robotics, automation, advertising, data science. 



Statistical learning



In HEP
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First, pioneering applications appeared in the 90ies


Became more popular in the 2000’s (LEP/Tevatron) until today’s boom: classify 
“signals” from “backgrounds” both online and offline, improve reconstruction of 
heavy particles from incomplete decay products, etc..



The model 
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Central assumption: observed data are generated from the probabilistic 
distribution p(x|m), the “model”, which is a mathematical description of the 
system of interest. The model depends on the data and on what we want to 
accomplish, e.g.:

Classification Regression Clustering

An approximation of the model is learned by using the information associated 
with input data. It is then used to identify the relevant properties of the system 
of interest and predict new data points. 



Parametric vs non-parametric
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Parametric models — fully specified by a number of 
parameters that does not grow with the size of the 
data set used to extract them. E.g, Gaussian 
mixture models


Non-parametric models — may grow in complexity 
with more data. E.g., a model that predicts the 
location of a data point in the feature space using 
the nearest known set of data points



Supervised learning
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Define a model h(x⃗|w⃗) flexible enough to be able to adapt to the problem at hand (but 
not more flexible than that)


Feed a set of “training” data x⃗t  to the model so that it can “learn” (adjust its 
parameters) for modeling any new data optimally [for the task]: give it N example 
events, each associated with feature variables x⃗ and the label (or target) y.  This is 
the value of the quantity I want the model to predict — can be a class label (signal, 
background or pion, kaon) or a real number (electron energy..). 


During learning iterate over the training data by adjusting the model-parameters w 
until a “distance” figure of merit that quantifies the difference of the model from the 
truth reaches a sufficiently low value. Define h(x⃗) = y.


Test performance on an independent labeled sample



Supervised learning

49
[Kagan, Le Cun]



Unseupervised learning
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As before, but labels are not known. The task is to find structure/pattern in the 
data.


Clustering: partition data into subsets according to similarities in the feature 
space

Dimensionality reduction: find a lower-
dimensional (simpler) representation of the 
data

[Kagan]



What follows
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In HEP, ML approaches have been mostly applied to classification: signal/
background, kaon/pion, photon/electron; quark-jet/gluon-jet, b-jet/ light-jet. 
Typically supervised due to availability of simulated and control samples


With the LHC, applications to a broader set of tasks are becoming popular (e.g., 
reweight multidimensional distributions to match to each other)


Our general discussion will be mostly restricted to supervised binary classification



The classification task
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In a sample of physics data, observe candidate “signal” events, contaminated by 
“background” events.  Each is associated to a set x⃗  of variables (or features or 
predictors) e.g., 
x1 = transverse momentum


x2 = displacement from collision point


x3 = …


xn = …

The goal is to classify the events within the signal or background categories. 

[Cowan]

x⃗ is distributed according to an n-dimensional joint 
probability density p(x⃗|m), which differs for signal (H1) 
and background candidates (H0).        



Decision boundaries
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Can do it with cuts

Or identify some sort of decision boundary

[Cowan]

[Cowan]



Decision boundaries
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Can make y(x⃗) as a 
scalar number and 
determine it in a way 
that its distributions for 
the signal and 
background samples are 
maximally separated.


With such a 
dimensionality reduction, 
a “cut” on y(x⃗) offers a 
decision boundary

Decision boundary  —  a function of the data that allows separation between 
classes. Surface in the n-dimensional space of the features.

Data

Distribution of y(x) 
under hypothesis H0

y(x)

Distribution of 
y(x) under 
hypothesis H1



Binary classification performance
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Three classifiers separate “red” from “blue” classes of events.


Which one does it better?

Rogozhnikov



ROC
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None: all have the same receiver operating characteristic (ROC) curve:            
signal classification efficiency vs background misclassification efficiency.

wea
ke

r c
las

sifi
er

str
on
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r 

cla
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ifie
r

Efficiency for backrgound 

Effi
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 fo
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Standard measure of performance 
for binary classifiers.


Each point in the curve 
corresponds to a threshold in the 
classifier output. 


Get as much top right as possible. 


Is there any optimal variable that, 
given the information in data, allows 
separating two classes of events 
with minimum false positive rate at 
given true positive rate?



Yes
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α

[Cranmer]



Neyman-Pearson Lemma — remember?
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The optimal variable exist and it is the likelihood ratio


For any false positive rate (i.e., misclassification of true background events), the 
region W of acceptance of H0, which minimizes the probability to accept H0 
when H1 (or, to classify as background a true signal event) is true, is a contour 
(a cut, in 1D) of the likelihood ratio.

p(x|H1

p(x|H0)
> k↵

Therefore the optimal decision boundary is (where x can be multidimensional)

(or any monotonic function of it)



Problem
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Rarely the densities p(x⃗|H1) and p(x⃗|H0) that are needed to evaluate the likelihood 
ratio for each event are known. 


Most of the supervised machine-learning classification task boils down to use 
the data to find the best approximation of the likelihood ratio



Guessing the density
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Simple guess: assume y to be a linear 
function of the features


and find the coefficients wi that 
maximize the separation between the 
distributions of y(x) on signal and 
background events:



Fisher’s discriminant
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[Cowan]



Fisher’s discriminant
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[Cowan]



Fisher’s discriminant
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The resulting weights define the linear 
decision boundary such that the projection 
of the points along the tangent of the 
boundary produces maximally separated 
distributions.

[Cowan]



Fisher’s discriminant
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Suboptimal separation Fisher discriminant



Fisher’s discriminant
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For Gaussian data with equal covariance the Fisher discriminant offers the 
optimal decision boundary.


The Fisher’s discriminant is a monotonic function of the likelihood ratio and is 
therefore optimal (for Gaussian data with equal covariance)

[Cowan]



Limitations of linear boundaries
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A linear decision boundary is optimal when the 
classes of events to be separated are 
distributed as multivariate Gaussians with same 
covariance and differing mean


When data are non-Gaussian, linear decision 
boundaries can fail.

[Cowan]



Limitations of linear boundaries

67

Occasionally in simple problems, a nonlinear transformation that maps the 
feature space into variables that are more likely to be linearly separable is 
evident 

x1…..xn   ==> ϕ₁(x⃗)…ϕn(x⃗)

x1, x2 ϕ₁(x1, x2) = tan-1(x2/x1)


ϕ2(x1, x2) = (x12 + x22)1/2


In general, the functions of the feature space ϕ⃗(x⃗,w⃗) depend also on free 
parameters w⃗.


[Cowan]



Nonlinear discriminants

68

In general, the set of basis functions in the feature space that allows/optimizes 
the classification is not evident.


A number of approaches offer algorithms to identify and parametrize such basis 
functions to offer effective classification.


Among the most commonly used nonlinear discriminants in HEP are artificial 
neural networks (some similarities with neuronal functionality)


Used in HEP since the early 80’s — quite some time after the initial works by 
McCulloch and Pitts (1943) and Rosenblatt (1962).



Artificial Neural Networks
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Define a number of input “nodes” (driven by the 
dimensionality of feature space x⃗)  and an output y(x⃗). 
i.e., a scalar variable where a single cut defines a 
decision boundary.


Choose a number (1 to few) of intermediate “hidden” 
layers. In each, choose a number of nodes.                   
More layers/nodes imply more model parameters (N). 


Each node connects to the downstream nodes. The 
intensities of the connections are tunable weights w


Choose a monotonic nonlinear function that expresses  
the “excitation” of each node in response to input from 
the upstream nodes (e.g., h(s) =  1/ (1+ e-s)



Artificial Neural Networks
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When the ANN receives some input data, in each node, the weighted inputs 
incoming from the preceding nodes are fed to the activation function, which 
outputs to the resulting activation intensity to the following nodes.


The classification performance depends on the value of the weights. These are 
optimized during the training phase.



Training
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Before the ANN can classify unknown events, the ANN is fed events of known 
classification (simulation, typically) so that the it can “learn”. Each event “a” comes 
with its set of features x⃗a = (x1…..xn) and its true class ta  = 0 or 1.


The set of optimal weights w is obtained by minimizing an error function that 
quantifies how much the classification achieved by the ANN departs from the true 
classification (known for the training sample). Error-function example

Minimizing E(w) over the space of weights to obtains their optimal values 



Gradient descent
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The error function is minimized numerically, e.g., by using the gradient descent 
method: start from an initial guess (or random choice) and make a step in the 
direction of maximum decrease.


Update w for each training event a.

minimum 

[Kagan]

[Cowan]

Error backpropagation: determines the derivatives needed to calculate the gradient 
directions at each node using a recursive rule.
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Overtraining
The number of inputs and inner nodes should be optimized for the problem .


Too many nodes (i.e., free parameters) yield outputs 
conforming too closely the training data. 


Overtraining: decision boundary follows the details of the 
statistical fluctuations yielding an unrealistically small error 
rate on the training data.


Evaluate classification performance on a independent 
validation sample. Different behavior of the error function vs 
training cycle between the training sample and a validation 
sample indicates the onset of overtraining. 


After the ANN architecture is optimized, the expected 
performance should be evaluated in a test sample (other 
than the training and validation samples).

E(w)

Training cycle

[Cowan]

training sample

validation sample
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Bias-variance tradeoff
At given training sample size, the higher the ANN complexity (more hidden layers, 
more nodes) the larger the statistical errors of the ANN parameters, since 
information from the same data is used to determine a larger number of 
parameters. This yields overtraining and high variance. 


However, with the too few nodes, the ANN struggles to expoit the nonlinearities, 
yielding bias.

Too many model 
parameters: large variance

[Cowan]Too few model parameters: 
large bias Tradeoff
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Bias-variance tradeoff
[Kagan]Evaluate the generalization 

error of your procedure by 
splitting data set in three 
samples: 


1 training sample: fit values 
of model parameters


2. validation sample: check 
performance on independent 
data and optimize it by 
tuning # of parameters


3. Test sample final 
evaluation of performance, 
with all parameters fixed

Generalization error



Regularization

One approach for avoiding overfitting/overtraining is to incorporate in the cost 
function a penalty for large weights.


Increasing the regularization parameter λ drives the weights to zero,  thus 
effectively reducing the number of nodes unless they are consistently 
supported by the training data



Advanced usages — adversarial networks
Make the classifier output less sensitve to  
systematic effects or less biasing toward  
variables that may need to be fit 
downstream in the analysis.


Similar techniques been applied to 
decision trees (more later)

Discriminating function for various values of ν



Universal approximation theorem

A feed-forward multilayer perceptron with a single hidden layer and a finite 
number of nodes activated through any continuous nonpolynomial function can 
approximate arbitrarily well any continuous function


(Says nothing on how many nodes we need or how many data…)



Universal approximation theorem

[Kagan]



Advanced usages — convolutional networks 

Promising for the analysis of LAr time-projection chamber “event pictures” from 
current and future neutrino experiments 


[Kato]



Advanced usages — convolutional networks 

Promising for the analysis of LAr time-projection chamber “event pictures” 
produced in current and future neutrino experiments 


[Kato]



Decision trees

Algorithms that subdivide the space of the input 
variables (features) into a number of simple 
nonoverlapping regions (n-dimensional rectangles). 


Each region will be labeled as “signal region” or 
“background region” according to the predominant 
category of training events that populate it after 
training. 


Such labels are used to classify the test events.



Decision trees

Subdivision of feature-space corresponds to a set 
of splitting rules.


Represent through an (inverted) tree-like structure 
made of a cascade of decision nodes, each 
associated to an input variable


Each node tests a single feature of the event at a 
time (e.g., cuts on a single variable) and routes the 
event on one of its downstream branches.  
partitioning the sample into subsamples of 
increasing purity until the final classification is 
reached (events accumulated in the terminal 
nodes (leafs). 



Trees vs linear models



Building the tree —how the subregions are chosen

Recursive binary splitting.


At each building step, choose the input variable and the cut threshold on it that 
minimizes a cost function. 


Misclassification rate, the fraction of events of the training sample in that region 
that do not belong to the  most common class (not really used)


Typically use cross enthropy                                                or functions of it (Gini)



Building the tree —how the subregions are chosen

Repeat the process of choosing the variable and cut value that minimizes the cost 
but do it restricting to one of the two regions previously identified.


Without a stopping criterion, the training sample could end up being exactly 
classified, leading to strong overtraining. Typically impose stopping criteria like 
minimum number of entries in a node or achieved purity.


Still decision trees can grow very large and pruning is applied. For instance 
terminal leaves are recombined if their purity is compatible within statistical  
uncertainties.



Instabilities
[Rogozhnikov]Tree keeps splitting until each event is correctly classified




Instabilities
[Rogozhnikov]
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Improving trees

Typically classification performance of decision trees is not competitive with that 
from other machine-learning approaches.  


By aggregating multiple decision trees, the classification performances is  
improved. 


Combination of several weak learners with high variance goes a long way
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Improving trees - bagging/boosting

Generate N nearly independent training samples by resampling a single training 
sample. Build a tree based on each of the resampled training samples. For each 
test point in feature space, look at the classification of the N trees, and define the 
classification output of the tree as the most common output among the N trees 
(bagging)


Train N trees in sequence, giving in each more weight to the training examples 
misclassified in the previous tree. Take the weighted vote of the outputs to classify 
the examples. (boosting)


(not specific of decision trees, can be applied to other machine-learning methods).
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Improving trees - random forests

Tweak the bagging algorithm decorrelates better the trees obtained by the 
resampled training data.


When considering a split in the building step, only a random subset of the 
whole set of features is available for choose the splitting-variable.                         
This “forces” the trees to develop differently thus reducing correlations among 
them and therefore the variance of the bagged trees


E.g, if one feature is much more discriminating than all others. A split based 
such feature would likely to be at the top of most the trees derived from the 
resampled training data. Such trees will therefore be similar and yield strongly 
cotrrelated outputs strongly. Since correlations do not reduce by averaging, the 
advantages of bagging will be lost.



92

Practical advice

[Kagan]
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No free lunch theorem

Many ML methods and tools out there to improve our reach in HEP-specific 
problems: linear, nearest neighbor, ANN, DeepNN, DT ensembles,  support 
vector machines…


With no prior knowledge, general statements on performance are hard. 
Performance very much dependent on the details of the problem at hand. 


The only shortcut to your trial and error is if your problem mirrors a similar 
problem somebody else has already explored.



94

Empirical heuristics [Kagan]
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Thanks for your attention 
and your questions



Further readings - books
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G. Cowan,“Statistical 
data analysis”

F. James, “Statistical Methods in 
Experimental Physics, data analysis”

G. Casella, R. Berger, 
“Statistical Inference

A. Stuart, et al “Kendall’s Advanced 
Theory of Statistics Vol 2A”

PDF and slides: www-bcf.usc.edu/~gareth/ISL/

T. Hastie et al., “An Introduction 
to Statistical learning”

T. Hastie et al., “The elements 
of statistical learning”
https://web.stanford.edu/~hastie/ElemStatLearn/

C. Bishop “Pattern recognition 
and machine learning”
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Further readings — slides/docs
• Statistics@ http://hcpss.web.cern.ch/hcpss/  (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al.)


• Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/


• Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confId=11244


• T. Junk’s lectures from www-cdf.fnal.gov/~trj/


• L. Lyons lectures: https://indico.cern.ch/event/431038/


• Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/


• B. Cousins’ stuff: try to find his (CMS restricted) “Statistics in Theory - prelude to Statistics in Practice” lectures. Look  
at his statistics papers on inspire and the references he reccommends.


• Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org


• IML material (https://indico.cern.ch/category/8009/ and recent HEP-relevant resources linked from https://
github.com/iml-wg/HEP-ML-Resources#lectures.

http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://www-cdf.fnal.gov/physics/statistics/
https://indico.cern.ch/category/8009/
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures
https://github.com/iml-wg/HEP-ML-Resources#lectures

