Photon propagation in scintillation detectors

1st National Workshop on GEANT4 and its Applications to High-Energy Physics and Astrophysics, IUCAA, Pune, 5-9 December 2022

- Pravata K. Mohanty
- TIFR, Mumbai Email: <u>pkm@tifr.res.in</u>

Scintillation detectors

Major steps

- Energy deposition by ionising radiation
- 2. Conversion of energy to scintillation photons
- 3. Transport of photons to a photodetector
- 4. Photon to electrical signal

- Inorganic scintillators 1. (high light o/p, slow response~10-1000ns) Ex. Nal, Csl, BaF₂
 - 2. Organic scintillators (low light o/p, fast response ~a few ns) Ex. Liquid scintillator, plastic scintillator

Plastic scintillators and applications

- Fast response time (~nanoseconds)
- Can be moulded into any desired form
- Rugged nature
- Relatively cheap, hence affordable for large area requirements

- Plastic scintillators are used in high energy, cosmic ray and nuclear physics experiments **Space based detectors Radiation portal monitors**
- Muon tomography

The GRAPES-3 Experiment at Ooty

- 560 m² muon telescope consisting 3712 proportional counters (6m x 0.1m x 0.1m)
- Records EAS events per day = 3×10^6 , median energy = 15 TeV

400 plastic scintillator detectors (1 m² area) with 8 m inter-separation spread over 25,000m²

R&D of plastic scintillators at CRL

Decay Time= 1.6 ns Light Output = 85% Bicron (54% anthracene) Timing 25% faster Atten. Length $\lambda = 100$ cm Cost ~30% of Bicron Max Size 100cmX100cm Total > 2000 CERN, Osaka, IUAC Delhi, Bose, VECC, BARC, ECIL, Utkal U., Dayalbag Edu. Inst, IISER Pune

Radiation monitor for BARC

Scintillation mechanism

base plastic

Polyvinyltoluene, Polystyrene

primary fluor (~1% wt/wt)

p-Terphenyl

secondary fluor (~0.05% wt/wt)

POPOP

photodetector

PMT, SiPM

Scintillation mechanism

Scintillator molecules have various electronics states ($S_0, S_1, S_2, ...$) and vibrational states $(S_{00}, S_{01}, S_{02}, ..., S_{10}, S_{11}, S_{12},)$

Spacing between electronics states is 3 to 4 eV and spacing between vibrational states is about 0.15 eV.

At room temperature, average energy is about 0.025 eV. All molecules are in the S_{00} state.

When charged particle passes through the scintillator, kinetic energy is absorbed by the molecules and electrons are excited to upper levels.

Higher states deexcites to quickly (pico seconds) to S_1 state through radiation loss transitions.

Transition from S₁₀ to ground state produces scintillation light. The process is called fluorescence.

Fluorescence intensity at time t is

 $I = I_{n} e^{-t/\tau}$, τ is few nano seconds

Energy loss in scintillator and conversion to photons

is 2 MeV

Scintillation photons are produced isotropically along the track of the particle.

Energy loss to photon conversion: 1 photon (3 eV) per 100 eV energy

Number of photon produced per cm is typcially 20,000

It is important to efficiently transport the photons to a photodetector which converts photons to a measurable electrical signal

Mean energy loss by ionizing particle like muon in scintillator of thickness 1 cm

Light guides

Scintillation light comes out from all surfacesNeeds to be navigated to photodetector

FISH TAIL

ADIABATIC GUIDE

Wavelength shifting fiber readout

Uniform collection and efficient transport of light from scintillator to photodetector

Monte Carlo code G3sim for simulation of plastic scintillator detectors with wavelength shifter fiber readout

P. K. Mohanty, S. R. Dugad, and S. K. Gupta^{a)} Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

(Received 31 January 2012; accepted 11 March 2012; published online 3 April 2012)

A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698089]

A realistic photon propagation simulation code written in C++ (~1400 lines)

1: Generation and propagation of muons

 $\frac{dN_{\mu}}{d\Omega} \propto \cos^2 \theta.$

2: Energy loss (dE/dX) calculation using Landau distribution

3: Generation of photons in scintillator.

4: Propagation of photons in scintillator using basic laws of reflection and considering attenuation loss and loss due to imperfect surface

5: Capture, trapping and propagation of photons in WLS fiber considering meridional and skew ray modes

6: Convolution of PMT responses.

G3sim code

Attenuation due to self absorption

Reflectors

Reflectors play a very significant role to enhance the light collection

Specular Reflection: Reflected angle is equal to incident angle $(\theta_i = \theta_i)$

Aluminum foil (Reflectivity ~ 90%)

Diffuse Reflection: Reflected angle is independent of incident angle

Tyvek has good strength and resistant to degradation (Reflectivity ~ 90%)

Escape fraction ~ 70%

$$\frac{dI}{d\theta} \propto \cos\theta.$$

Wave-length shifting fibers

Absorption wavelength of WLS fiber matches with scintillator emission wavelength (blue, ~420 nm). Emission of WLS fiber is at longer wavelength (green, ~495 nm).

Photon Trapping in Fiber

Meridional rays

Incident, normal and reflected ray lie in the same plane

Core: 0.94mm Refractive index = 1.59

Inner clad: 0.03mm Refractive index = 1.49

Outer clad: 0.03mm Refractive index = 1.42

Skew Rays

do not lie in the same plane

$$\sin(\theta_{axial}) = \cos(\theta_{in}) \left\{ 1 + \left(\frac{r/r_0 \sin(\chi - \alpha)}{1 - r/r_0 \cos(\chi - \alpha)} \right)^2 \right\}^1$$

P.K. Mohanty et al. Rev. Sci. Instrum. 83 (2012) 043301.

Axial angle distribution of trapped photons

Trapping Efficiency of meridional rays = 3.2 %

With inclusion of skew rays, trapping efficiency = 4.8%

Kuraray double clad fiber = 350 cm

Loss from the imperfect surface:

number of reflections N ~ 500

Losses in Fiber

- Self absorption loss : Attenuation length for

 - Total internal reflectivity R = 0.9999

- For 1 meter long and 1mm diameter fiber,
 - Survival probability = $R^{N} = 0.95$

G3sim input parameters

TABLE I. Simulation parameters.

Photon conversion Maximum reflections Scintillator ETIR Tyvek reflectivity Fiber reflectivity Path-length step λ_{scint} λ_{WLS} η_{scint} η_{core} $\eta_{clad} - 1$ $\eta_{clad} - 2$ η_{air} Min, Max (X Y Z)

100 eV 150 0.93 0.90 0.9999 0.01 cm 100 cm 350 cm 1.59 1.59 1.49 1.42 1.00 $-25\ 25\ -25\ 25\ -1\ 1\ cm$

Photon statistics (50 cm x 50 cm x 2 cm)

TABLE II. Photon statistics.

Produced in scintillator Escaped from scintillator Absorbed in scintillator Entered WLS fiber Escaped from WLS fiber Trapped in WLS fiber Absorbed in WLS fiber

46 000
11 500
30 000
4500 → 10%
3850
650
450
200 ► 0.4%

Uniformity Time Response (a) 100<u></u> (a)_ 95 parallel 90È 85 80 (b) Relative light output 96 6 100 101 100 101 (b)_ matrix 80 (c) 100 (C)_ 95⊢⊿ σ 90È 85 80 10 15 20 25 30 5 20 30 10 40 Time (ns) Distance (cm)

Summary of groove comparisons

Photo-electron yield

Groove	Fiber-length(cm)	Photo-electrons	Groove	Experiment	Monte Carlo
Parallel	900	20.5	Parallel	2.7	2.0
Matrix	900	21.7	Matrix	2.1	1.6
σ	656	17.9	σ	3.5	3.3

Time Response (ns)

Groove	Experiment	Monte Carlo
Parallel	2.5	2.3
Matrix	2.4	2.3
σ	2.4	2.4

Conclusion

photo-electron yield is proportional to the length of fibers in the groove and other responses are found be independent of design.

because of ease in fabrication

RMS non-uniformity (%)

Parallel groove design selected for final configuration

THANK YOU

