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Introduction

In this talk I describe a precise ‘duality’ between two of the
best studied nonlinear partial differential equations in
physics, namely the Navier Stokes equations of
hydrodynamics and Einstein’s equations of general
relativity.
The study of this ‘fluid gravity correspondence’ has led to
the realization that the ‘standard’ equations of charged
relativistic hydrodynamics (see e.g. Landau and Lifshitz)
are incomplete in certain contexts, and has stimulated
investigations that have remedied this lacuna.
The so called ‘Fluid Gravity Correspondence’ has also
focussed attention on the lack of a satisfactory systematic
framework for hydrodynamical equations in general, and
has led to work that aims at filling this gap.
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Relativistic Fluid Dynamics

I start this talk with a quick review of the structure of the
equations of hydrodynamics. In the simplest context the
variables of hydrodynamics are local values of
thermodynamical fields (e.g. T (x), µ(x), uµ(x))
The equations of hydrodynamics are conservation laws

∂µTµν = FµνJν
∂µJµ = cF ∧ F

(1)

with currents expressed as functions of thermodynamical
fields.
The equations that express conserved currents in terms of
thermodynamical fields are called constitutive relations.
Constitutive relations are specified order by order in a
derivative expansion.
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Local Equilibriation

As we have seen, the equations of hydrodynamics are
simply conservation laws that follow from symmetries;
these equations are exact in any quantum field theory.

However ∂µTµν = 0 are d equations for d(d+1)
2 − 1

variables. In d = 4, for example, this is 4 equations for 10
variables. These equations constrain dynamics but do not,
by themselves, constitute a well defined initial value
problem for the stress tensor.
The key assumption of hydrodynamics is that the condition
of local equilibriation determines all 10 components of the
stress tensor in terms of 4 independent fields, the energy
density and the local velocity. Taken together with a
particular set of constitutive relations, the conservation
laws specify a well defined initial value problem for the
stress tensor and other conserved charges.
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Constitutive Relations

Constitutive relations for any given field theory may, in
principal, be deduced by a sufficiently detailed dynamical
study of the theory.
In strongly coupled quantum field theories, however, this
derivation of constitutive relations from first principles
appears difficult to actually impelement even by numerical
methods (the one exception to this statement uses
holography: see below). For most practical pruposes
hydrodynamics is best regarded as an autonomous
effective field theory.
The equations of motion of this effective field theory are
specified once we have the fluid constitutive relations.
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Constitutive relations

At zero order in the derivative expansion the fluid constitutive
relations are thermodyanamically determined;

Tµν = (ρ+ P)uµuν + Pηµν + πµν

Jµ = quµ + Jµdiss
(2)

At higher orders in the derivative expansion the constitutive
relationship is corrected to

Tµν = (ρ+ P)uµuν + Pηµν + πµν

Jµ = quµ + Jµdiss
(3)

Here πµν and Jµdiss represent terms of first or higher order in
derivatives of the velocity, energy density and conserved
charges. At any order in the derivative expansion there is a
finite dimensional basis for all such terms. These basis tensors
can then be multiplied by arbitrary functions of the energy
density and conserved charges.
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Constitutive Relations for charge fluids at first order

The total number of (onshell independent) tensors in the
constitutive relations at first order for a charged fluid turns
out to be 5 (parity even) structures and 2 parity odd
structures.
This observation may suggest that the equations of
hydrodynamics at first order are parameterized by 5 + 2
undetermined ‘transport coefficients’. This is actually an
overcount, as we will see in much more detail below.
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AdS/CFT

It has long been argued that U(N) gauge theories reduce
to effectively classical systems in the t’ Hooft large N limit.
N = 4 Yang Mills theories are U(N) gauge theories. These
theories are conformally invariant; they define a line of
fixed points labeled by a continuous coupling constant λ.
In 1997 Maldacena identified the corresponding large N
classical systems.
While the classical equations identified by Maldacena are
unfamiliar (and appear complicated) at finite λ, they
simplify dramatically at large λ. In this limit they reduce to
the equations of Einstein (IIB super) gravity on spacetimes
that asymptote to AdS5 × S5.
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Thermal equilibrium from gravity

The gravitational description of field theory dynamics
applies only at very strong field theory coupling.
Even at strong coupling, however, we have some
qualitative expectations of local QFTs. For instance they
are expected to equilibriate at every finite temperature.
What is the gravitational description of this thermal state?
Answer (Witten): an asymptotically AdS black brane.
This answer is universal in the following sense. Every 2
derivative theory of gravity interacting with other fields of
spin ≤ 2 admits a consistent truncation to Einstein’s
equations with a negative cosmological constant. Black
brane solutions lie in this universal sector.
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Black Branes

In appropriately chosen units, Einstein’s equations with a
negative cosmological constant in d + 1 dimensions are

RMN −
R
2

gMN =
d(d − 1)

2
gMN : : M,N = 1 . . . d + 1

The black brane at temperature T and velocity uµ are a d
parameter set of exact solutions of these equations

ds2 =
dr2

r2f (r)
+ r2Pµνdxµdxν − r2f (r)uµuνdxµdxν

f (r) = 1−
(

4πT
d r

)d

; Pµν = gµν + uµuν

These solutions have a horizon at r = 4πT
d . The thermal

nature of these solutions follows from well known
properties of event horizons.
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Linearization about black branes

Einstein’s equations allow us to study deviations from
thermal equilibrium. Natural first question: what is the
spectrum of linearized fluctuations about thermal
equilibrium?.
If we impose the requirement of regularity of the future
horizon, the anwer is given by gravitational ‘quasinormal
modes’. Discrete infinity of such modes labeled by
integers. For the nth mode ω = ωn(k). Frequency complex
corresponding to decay.

It follows from conformal invariance that ωn(0) =
f (n)
T .

f (n) 6= 0 except for the 4 Goldstone modes corresponding
to variations of T and uµ. Infact Policastro Starinets and
Son demonstrated that the dispersion relation for these
Goldstone modes at small k takes the form predicted by
fluid dynamics -(shear and sound waves) provided η

s = 1
4π
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Hydrodynamics from gravity?

So we now have a first hint that black branes mimic the
behaviour of thermal QFTs for dynamical, not just static
purposes. However this check worked at the linear level;
can we take it further?
As we have explained above, we expect the full nonlinear
effective dynamics of any locally equilibriated field theory
to be given by the equations of hydrodynamics, provided
all variations are slow (compared to a dynamical relaxation
time).
Thus the AdS/CFT correspondence appears to imply that
the equations of asymptotically AdS gravity reduce to
(relativistic generalizations of) the Navier Stokes equations
at the full nonlinear level in an appropriate long distance
expansion. Is this exciting suggestion true?
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Local temperatures and velocities

We look for solutions that ‘locally’ approximate black
branes but with space varying velocities and temperatures.
More precisely we search for bulk solution tubewise
approximated by black branes. But along which tubes?
Naive guess: lines of constant xµ in Schwarschild (Graham
Fefferman) coordinates, i.e. metric approximately

ds2 =
dr2

r2f (r)
+ r2Pµν(x)dxµ(x)dxν(x)− r2f (r)uµuνdxµdxν

f (r) = 1−
(

4πT (x)
d r

)d

; Pµν = gµν(x) + uµ(x)uν(x)

Does not seem useful. Appears to be a bad starting point
for perturbation theory. Also has several interpretative
difficulties.
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Ingoing Coordinates

Causality suggests the use of tubes centered around
ingoing null geodesics. In particular we try

ds2 = g(0)
MNdxMdxN = −2uµ(x)dxµdr + r2Pµν(x)dxµdxν

− r2f (r ,T (x))uµ(x)uν(x)dxµdxν

Metric generally regular but not solution to Einstein’s
equations. However solves equations for constant
uµ,T ,gµν . Consequntly appropriate starting point for a
perturbative soln of equations in the parameter ε(x).
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Long wavelength expansion

That is we set

gMN = g(0)
MN(εx) + εg(1)

MN(εx) + ε2g(2)
MN(εx) . . .

and attempt to solve for g(n)
MN order by order in ε.

Perturbation expansion surprisingly simple to implement.
Nonlinear partial differential equation→ d(d+1)

2 ordinary
differential equations, in the variable r at each order and
each boundary point.
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Hydrodynamics from gravity

It turns out that all equations can be solved analytically
(and rather simply). Upon solving the equations we find
that the perturbative procedure spelt out above can be
implimented at nth order only when an integrability
condition of the form ∂µTµν

n−1(u
µ(x),T (x)) where

Tµν
n−1(u

µ(x),T (x)) is a specific function of temperature and
velocities and their spacetime derivatives to (n− 1)th order.
This function is determined directly from Einstein’s
equations by the perturbative procedure.
For every uµ(x) and T (x) that satisfies this Fluid
Dynamical equation we have a solution to Einstein’s
equations. The map from fluid dynamics to gravity is locally
invertable assuming regularity of the future event horizon.
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Explicit Results at second order

We have explicitly implemented our perturbation theory to
second order.

ds2 = −2uµdxµ (dr + r Aνdxν) + r2gµνdxµdxν

−
[
ωµ

λωλν +
1

d − 2
Dλωλ(µuν) −

1
d − 2

Dλσλ(µuν)

+
R

(d − 1)(d − 2)
uµuν

]
dxµdxν

+
1

(br)d (r
2 − 1

2
ωαβω

αβ)uµuνdxµdxν

+ 2(br)2F (br)
[

1
b
σµν + F (br)σµλσλν

]
dxµdxν . . .
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Explicit Results at second order

− 2(br)2σαβσ
αβ

d − 1
PµνK1(br)− uµuν

(br)d−2
σαβσ

αβ

(d − 1)
K2(br)

+
2 L(br)
(br)d−2

[
Pλ
µDασαλuν + Pλ

νDασλαuµ
]

dxµdxν

− 2(br)2H1(br)
[
uλDλσµν + σµ

λσλν −
σαβσ

αβ

d − 1
Pµν

+Cµανβuαuβ
]

dxµdxν

+ 2(br)2H2(br)
[
uλDλσµν + ωµ

λσλν − σµλωλν
]

dxµdxν
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Explicit results at second order

Where

F (br) ≡
∫ ∞

br

yd−1 − 1
y(yd − 1)

dy ; L(br) ≡
∫ ∞

br
ξd−1dξ

∫ ∞
ξ

dy
y − 1

y3(yd − 1)

H2(br) ≡
∫ ∞

br

dξ
ξ(ξd − 1)

∫ ξ

1
yd−3dy

[
1 + (d − 1)yF (y) + 2y2F ′(y)

]
K1(br) ≡

∫ ∞
br

dξ
ξ2

∫ ∞
ξ

dy y2F ′(y)2 ; H1(br) ≡
∫ ∞

br

yd−2 − 1
y(yd − 1)

dy

K2(br) ≡
∫ ∞

br

dξ
ξ2

[
1− ξ(ξ − 1)F ′(ξ)− 2(d − 1)ξd−1

+
(

2(d − 1)ξd − (d − 2)
)∫ ∞

ξ
dy y2F ′(y)2

]
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Second order boundary stress tensor

The dual stress tensor corresponding to this metric is given by
(4πT = b−1d)

Tµν = p (gµν + duµuν)

− 2η
[
σµν − τπuλDλσµν − τω

(
σµ

λωλν − ωµλσλν
)]

+ ξσ

[
σµ

λσλν −
σαβσ

αβ

d − 1
Pµν

]
+ ξCCµανβuαuβ

p =
1

16πGd+1bd ; η =
s

4π
=

1
16πGd+1bd−1

τπ = (1− H1(1))b ; τω = H1(1)b ; ξσ = ξC = 2ηb
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Gravitational constitutive relations

Note that gravity reduces to fluid dynamics with particular
(holographically determined) values for dissipative
parameters. As we have seen the schematic form of the
fluid stress tensor is

Tµν = aT d(gµν + duµuν) + bT d−1σµν + T d−2
5∑

i=1

ciSi
µν

a is a thermodynamic parameter. b is related to the
viscosity: we find η/s = 1/(4π). ci coefficients of the five
traceless symmetric Weyl covariant two derivative tensors
are second order transport coefficients. Value disagree
with the predictions of the Israel Stewart formalism.
Recall that results universal. Should yield correct order of
magnitude estimate of transport coefficients in any strongly
coupled CFT.
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Event Horizons

Our solutions are singular at r = 0. Quite remarkably it is
possible (under certain conditions) to demonstrate that
these solutions have event horizons and to explicitly
determine the event horizon manifold order by order in the
derivative expansion. This horizon shields the r = 0
singularity from the boundary.
Our control over the event horizon, together with the
classic area increase theorem of general relativity, can be
used to derive an ‘entropy current’ for our fluid flows that is
local and has positive divergence.
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Entropy Current at second order

Explicitly this entropy current is given to second order by

4 Gd+1 bd − 1 JµS = [1 + b2 (A1 σ
αβ σαβ + A2 ω

αβ ωαβ + A3R ) ]uµ

+ b2 [B1Dλ σµλ + B2Dλ ωµλ ]

where

A1 =
2
d2 (d + 2)− K1(1)d + K2(1)

d
, A2 = − 1

2d
, B2 =

1
d − 2

B1 = −2A3 =
2

d(d − 2)
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Charged Fluid Dynamics

Our gravitational discussion has so far focussed on
uncharged fluids. In order to study the gravitational dual of
charged fluid flows we need to study bulk equations with a
Maxwell field in addition to the bulk metric.
The addition of a bulk Maxwell field endows the boundary
theory with a conserved global charge. Equilibrium states
in such a system are labeled by a charge density together
with the energy density and velocity; in the bulk these
equilibrium configurations are given by charged
AdS-Reisnner Nordstorm black branes.
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Charged hydrodynamics

Following the general procedure described in this talk, it
has been established that the AdS Einstein -Maxwell
equations reduce, in an appropriate long wavelength limit,
to the equations of charged relativistic hydrodynamics.
The procedure yields expressions for the stress tensor and
charge currents as a function of local temperatures,
velocities and chemical potentials.
We find a surprise here even at first order in the derivative
expansion. In addition to the usual diffusive currents, in
d = 4 we find a term in the charge current proportional to
εµνρσω

νρuσ. This is important because this term was
ignored by Landau and Lifshitz and perhaps all authors
subsequently. The fact that such a term is allowed in the
equations of hydrodynamics was unexpected, and we now
turn to explain it.
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Hydrodynamics as an effective field theory

How were the Landau Lifshitz constitutive relations
obtained?
Of course Landau Lifshitz worked in the derivative
expansion imposing the constraints of symmetry. In the
case of charged relativistic hydrodynamics at first order,
however, this procedure allows for 7=5+2 first order
constitutive parameters. The equations listed by Landau
Lifshitz have three parameters (bulk viscosity, shear
viscosity and conductivity).
The cut from 7 to 3 followed from a requirement imposted
by Landau and Lifshitz; the equations of hydrdodynamics
must be compatable with the existence of an entropy
current whose divergence is positive at every point in every
allowed fluid flow. Physical intuition was used to guess the
form of this entropy current at first order; the requirement
of positivity of divergence of this entropy current then set 4
of the 7 symmetry allowed parameters to zero.
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The Entropy positivity constraint

As we have explained above, the gravitational results
disagree with those of Landau Lifshitz. This is puzzling as
the existence of a point wise positive divergence entropy
current may be proved directly within gravity. How is all this
consistent?
Turns out that the Landau-Lifshitz guess for the form of the
entropy current was not always correct. A good way to
implement the Landau criterion is to make no a priori
assumptions about the form of the entropy current, but
allow it to be the most general allowed by symmetry and
simultaneously constrain the form of the entropy current
and constitutive relations by the requirement of positive
divergence in an arbitrary consistent background
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Local positivity of entropy production

This principle turns out to be surprisingly constraining. At
first order in ordinary relativistic charged fluid dynamics it
sets two of the five symmetry allowed constitutive
parameters to zero, and determines two others as a
function of the anomaly coefficient. The last subtlety was
missed by Landau and Lifshitz (who set those coefficients
to zero) and gives modified constitutive relations in
agreement with holographic computations.
At second order in uncharged fluid dynamics it kills 5 out of
the 15 parameters . At first order in parity invariant
superfluid dynamics it kills 26 of the 47 parameters.
Systematic principle to generate ‘allowed’ constitutive
relations.
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Constraints from Equilibrium

Another idea (going back to Einstein), constraints from
equilibrium.
Main idea: consider the field theory on the background

ds2 = −e2σ(~x)
(

dt + ai(~x)dx i
)2

+ gij(~x)dx idx j (4)

A = A0(~x)dx0 +Ai(~x)dx i (5)

As this background is stationary, the total H and charge Q
of the system are conserved and the partition function

Z = Tre−
H−µ0Q

T0 (6)

is well defined.
Idea: determine the most general symmetry allowed
partition function, order by order in the derivative
expansion, and constrain hydrodynamics by matching in
equilibrium.
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Partition function for charge fluids

For a charged fluid at first order in the derivative expansion
the most general partition function takes the form

W = ln Z = W 0 + W 1
inv + W 1

anom

W 0 =

∫ √
g3

eσ

T0
P
(
T0e−σ,e−σ(A0 + µ0)

)
W 1

inv =
C0

2

∫
AdA +

C1

2

∫
ada +

C2

2

∫
Ada

W 1
anom =

C
2

(∫
A0

3
AdA +

A2
0

6
Ada

) (7)

where Ai
Ai = Ai − A0ai (8)

Note anomaly term proportional to C

Shiraz Minwalla



Constraints from Equilibrium

The stress tensor and charge current in equilibrium are
obtained by differentiating this partition function w.r.t. the
metric and gauge field.
Within hydrodynamics we expect

T (x) = T0e−σ + T1(x), µ(x) = (A0(x) + µ0)e−σ + µ1

uµ = eσ(1,0,0,0) + uµ1

Plugging these relations into the hydrodynamical
constitutive relations we find automatic agreement with the
stress tensor and charge current from the partition function
at the zero derivative level, provided we identify the
function P(T , µ) as the pressure of the system as a
function of its temperature and chemical potential.
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Constraints from Equilibrium

Carrying on to first order it turns out we can determine the
corrections to the equilibrium velocities, chemical
potentials and temperatures, together with all first order
constitutive coefficents that multiply expressions that are
nonvanishing in equilibrium in terms of the partition
function data
Yields the same 3 parameter set of equations of charged
relativistic hydrodynamics as obtained from the systematic
entropy function method. In this language Landau Lifshitz
missed the possibility of Chern Simons terms. The exact
agreement between the constraints of entropy positivity
and equilibriation has been checked in several different
contexts.
Imp question: Does this ageement persist to all orders?
Yes! S. Bhattacharya has demonstrated that existence of
equilibrium plus the stability of this equilibrium are
completely equivalent to the constraints from the local form
of the second law of thermodynamics.Shiraz Minwalla



Consequences for gravity

It is possible that Bhattacharyya’s construction can be
uplifted to gravity. By reversing the fluid gravity map it
could lead to the construction of a Wald entropy current for
higher derivative gravity, atleast in certain circumstances.
We have attempted to implement this programme, so far
without success?
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Other Constraints on Hydrodynamics

As explained above, two different physical constraints on
hydrodynamics have been shown to be equivalent. Does
this impressive achievement suggest that either of these
constraints fully exhauste the set of non obvious
constraints on the equations of hydrodynamics? No.
Jensen, Loganaygam and Yarom have obtained further
constraints from the principle of Euclidean consistency.
Remarkable result, relating mixed current - gravitational
anomalies to hydrodynamical transport coefficients. Does
not follow directly from entropy positivity.
Additional constraints from Onsager relations. Full set of
constraints on ‘classical’ hydrodynamics? Path integral
formulation of long distance finite temperature physics
entirely in terms of hydrodynamical variables on a
Schwinger Keldysh contour (hydrodynamicalfluctuations)?
Connection to quantum gravity in AdS? All under current
investigation.
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Conclusions

Asymptotically AdSd+1 gravity reduces, in the long
wavelength limit, to the equations d + 1 dimensional Navier
Stokes equations with gravitationally determined
dissipative parameters.
The results from the implementation of this programme
has corrected errors in widely accepted results on the
general structure of the equations of charged relativistic
hydrodynamics and superfluid hydrodynamics.
Interesting connections between the constraints on
constitutive relations from the existence and stability of
equilibrium and the local form of the second law of
thermodynamics. Possible application to Wald entropy
increase. Structural question about the general constraints
on constitutive relations.
Unexplored connections between quantum fluctuations in
gravity and the equations of hydrodynamics with
fluctuations.

Shiraz Minwalla


