Searches for squarks and gluinos in all-hadronic final states with ATLAS

Koichi NAGAI University of Oxford On behalf of ATLAS collaboration

25th international conference on supersymmetry and unification of fundamental interactions SASY 17 Tata Institute of Fundamental Research, Mumbai, India December 11 – 15, 2017

ATLAS in LHC

Large Hadron Collider (LHC) has been successfully operated at $\sqrt{s} = 13$ TeV.

A total integrated luminosity of 36.1 fb⁻¹ of proton-proton collision data was collected by the ATLAS experiment with good detector conditions and data quality during 2015 and 2016.

Upgrade of ATLAS detector before 13 TeV data taking to improve sensitivity:

- ➡ Insertable B-Layer
 - (Ave. 3 cm from the beam axis)
 - ✓ improved tracking, especially b-tagging
- ATLAS High Level Trigger system
 - ✓ larger acceptance, while enhancing rejection
 - Improved E_T^{miss} trigger
 - Improved jet energy scale

SUSY production at LHC

- Supersymmetry (SUSY) is an extension of Standard Model (SM)
 - A solution of hierarchy problem
- Assuming R-parity is conserved (RPC),
 - SUSY particles are pair-produced
 - Decay to SM particles and the lightest SUSY particle (LSP).
 - LSP is stable and weakly interacting.
 - ➡ Missing transverse momentum: E^{miss}_T
- At LHC, a pair of SUSY particles can be dominantly produced with strong interactions.
 - large cross-sections for gluino and squark productions

Search channels

Koichi NAGAI

Search strategies

Signal Regions (SR)

- Many dedicated SRs constructed by target signatures using discriminating variables, for example,
 - E_T^{miss} , N_{jet} , $N_{\text{b-jets}}$, p_T^{Jet} , M_{EFF} , M_J^{Σ} ,

 $E_T^{\text{miss}}/\sqrt{H_T}$, ISR Jet, $(\overrightarrow{p}_T^{\text{jet}}, \overrightarrow{E}_T^{\text{miss}})_{min}$

• Event level variables by Recursive Jigsaw Reconstruction (RJR)

Targets of searches

- "Simplified Model"
 - ✓ 1 step
 - ✓ Many-step
 - ✓ Gtt, Gbb
- particular decay modes
 - ✓ phenomenological MSSM (pMSSM)

Control Regions (CR)

- Orthogonal to SR, small contamination of signals
- Enriched a particular BKG
- Evaluate BKG MCs' normalisation factors with BKG only fit

Validation Regions (VR)

- Close to SR, limited potential signal contamination
- Validate background modelling

2-6jets channel

Koichi NAGAI

2-6j: Search strategies

- Effective mass (M_{EFF}) -based search
 - $\mathbf{M}_{\text{EFF}} \equiv \sum p_{\text{T}}^{\text{Jet}} + \mathbf{E}_{\text{T}}^{\text{miss}}$
 - $\checkmark \ M_{\text{EFF}} \approx \text{parent sparticle mass}$
 - 24 SRs: sparticle mass and final states
 - ightarrow ≥ 2, 3, 4, 5 jets: **direct** decays to LSP
 - ⇒ ≥ 5,6 jets: 1 step cascade decay with hadronically decaying W/Z/h bosons
 - ⇒ \geq 2 re-clustered large-R jets (R=1.0):
 - **l step** cascade decay with **boosted** W/ Z/h bosons

RJR-based search

- 19 SRs:
 - $\Rightarrow \Delta m \equiv m_P m_I$
 - squark/gluino/compressed decay models
 - RJR-variables defined by decay models

Om

ISR

https://arxiv.org/abs/1712.02332

2-6j: Background Estimation

Z + jets	$Z \rightarrow VV$	CR with γ + jets
W + jets	$W \rightarrow /_{V}$	CR with 1 lepton + b-jet veto
Top quark pair	Semi-leptonic decays	CR with 1 lepton + b-jet tagging
single top		
di-boson production		MC normalised to NLO cross-section

QCD multi-jet

a data driven method with jet smearing

No significant excess

The largest excesses are 2 \times 2.0 σ in M_{EFF} and 2.5 σ RJR (red circles)

Koichi NAGAI

Searches for squarks and gluinos in all-hadronic final states with ATLAS

2-6j: Interpretations

• Exclusion limit obtained with the SR with the best expected sensitivity at each mass point

2-6j: Interpretations

- Exclusion limit obtained with the SR with the best expected sensitivity at each mass point
- RJR-based SRs improved limits in regions with very compressed spectra

Gtt/Gbb channel

Koichi NAGAI

Gtt/Gbb: Introduction

https://arxiv.org/abs/1711.01901

- A search for gluino mediated stop (Gtf)/sbottom (Gbb) productions
 - Masses of stop and sbottom are expected to be light to solve the hierarchy problem.
- SRs are built by considering event signatures:
 - $N_{jet} \ge 4$ with $p_{T}^{jet} \ge 30 \text{ GeV}$
 - $N_{b-jet} \ge 3$
 - Large E_T^{miss}
 - $\Delta M = |M_{gluino} M_{LSP}|$
 - $M_{EFF} \equiv \sum p_T^{Jet} + \sum p_T^{Lepton} + E_T^{miss}$
- For **Gtt**, followings are also considered
 - Massive reclustered large-R jet (R=0.8) due to boosted top
 - Isolated e[±] or µ[±] from semi-leptonic top decay

Cut-and-count

- Maximise discovery power
- 6 Gtt & 4 Gbb SRs: Based on ΔM
 - ✓ four □ M regions: High, Moderate, Low, Very low
 - ✓ partially overlapping

Multi-bin

- Strengthen the exclusion limit
- 14 SRs:
 - Based on M_{EFF} and N_{jet}
 - ✓ non-overlapping

Koichi NAGAI

Gtt/Gbb: Background Estimation

top quark pair

MC normalised with top quark pair CR

single top, 4 tops

 $Z \rightarrow VV$

W + jets

Koichi NAGAI

Z + jets

 $W \rightarrow /_V$

MC normalised to the best available cross-section

Top quark pair + W/Z/h

di-boson production

QCD multi-jet

a data driven method with jet smearing

Cut-and-count VRs

Gtt/Gbb: Results

No significant excess

The largest excess ≈ 2.3σ in a Multi-bin SR

Gtt/Gbb: Interpretations

- Interpreted with the simplified model using multi-bin SRs
- New interpretation was done for gluino branching ratio plane Gtt vs Gbb
- Assuming three decay gluino's modes: Gtt, Gbb, Gtb and Br(Gtt) + Br(Gbb) + Br(Gtb) = 100%

Koichi NAGAI

Multi-jet channel

Koichi NAGAI

Multi-jets

W

Z/h

Many-step

Multi-jet

https://arxiv.org/abs/1708.02794

- Many-step cascade decay of SUSY particles can produce high N_{jet}
- Unique sensitivity to some slices in pMSSM

The final state is characterised with

• Moderate Ermiss

Motivation

- $N_{jet} \ge 8$ (7) with $p_T^{jet} \ge 50$ (80) GeV
 - → E_T^{miss} Significance: $E_T^{miss} / \sqrt{H_T} \ge 5 \ GeV_{1/2}$

Final state with top quarks are considered in Jet mass stream

• Sum of mass of re-clustered large-R jet (R=1.0): $M_{\rm J}^{\Sigma} \equiv \sum m_{\rm J}^{\rm R=1.0}$

Heavy flavour stream

- 21 SRs: $N_{jet} \ge 8, 9, 10, 11 (7, 8, 9)$ with $p_T^{jet} > 50 (80) \text{ GeV}$ $N_{b-jet} \ge 0, 1, 2$
 - ✓ Good sensitivity to signal with high LSP mass regions

Jet mass stream

- 6 SRs:
 - $N_{jet} \ge 8, \, 9, \, 10 \mbox{ with } p_T^{jet} > 50$ $M_J^{\sum} > 340, \, 500 \mbox{ GeV}$
 - ✓ Good sensitivity to signal with high gluino mass regions

Koichi NAGAI

pMSSM

Multi-jet: Background Estimation

Koichi NAGAI

Multi-jet: Results

No excess was observed in any SRs

STITY OF O

Exclusion limit obtained with the SR with the best expected sensitivity at each mass point

Interpretations

Multi-jet

2-6 jets

Gtt

Koichi NAGAI

22

Conclusion

The proton-proton collision data in 2015 and 2016 collected by ATLAS, corresponding integrated luminosity of 36.1 fb⁻¹, are fully analysed and the results have been finalised.

Not only relying increased statistics, but also analyses have been improved their sensitivity.

Despite outstanding efforts, the evidence of squarks/gluinos has not appeared yet.

Backup

2-6j: Results

Koichi NAGAI

2-6j: Results

Koichi NAGAI

Gtt/Gbb: Results

Koichi NAGAI

Exclusion limit obtained with the SR with the best expected sensitivity at each mass point

