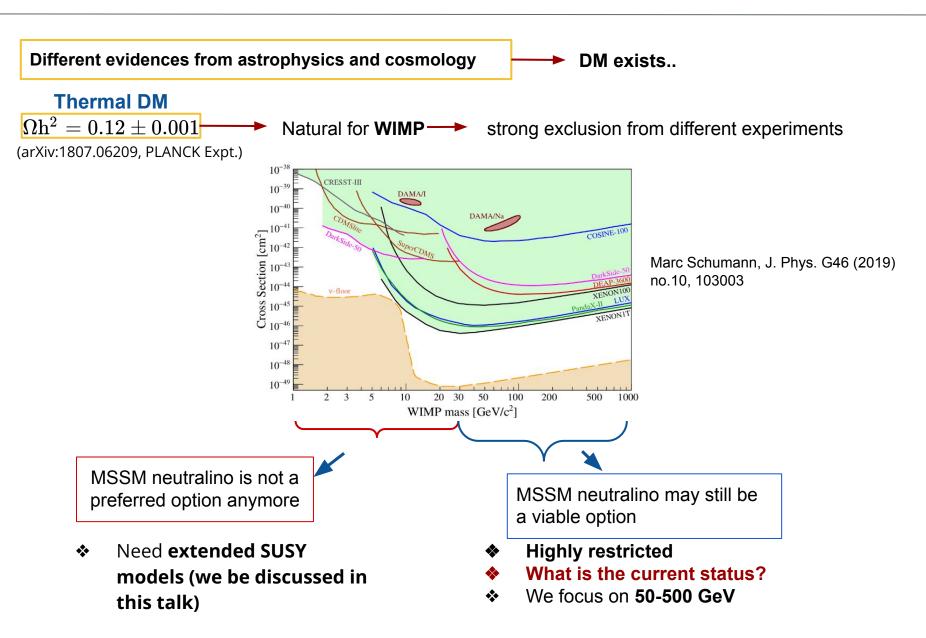
An overview of phenomenological studies

- > Dark Matter and its prospect at the LHC
- > Machine learning techniques for top-tagging
- > Effective field theory implications at the LHC

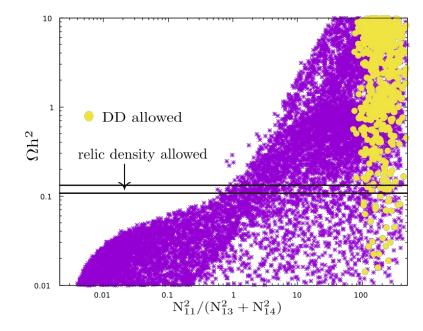

Arnab Roy

DHEP Annual Review TIFR, Mumbai

Dark matter

Based on M. Guchait, AR, S. Sharma *Phys.Rev.D* 104 (2021) 5, 055032 And M. Guchait, AR *Phys.Rev.D* 102 (2020) 7, 075023

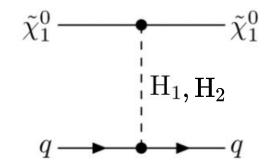
WIMP, status and exclusion



Possibilities within MSSM

- Large **Higgsino** component
 - Under-abundance of relic density
- Large **Bino** component
 - Mostly over-abundance
 - But often right relic-density can be met
 - Resonance annihilation through Higgs, due to small Higgsino component
- To satisfy DD limits :

 $N_{13}^2 + N_{14}^2 \sim 1\% \ {
m or} \ {
m less}$


Mild-tempered neutralino

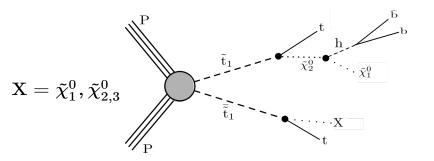
Q. Is it the only possibility?

Blind spots

- Can occur due to reduced Higgs coupling to lightest neutralino
- > Or destructive interference between light and heavy Higgs exchange

LHC Implications

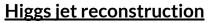
Key features

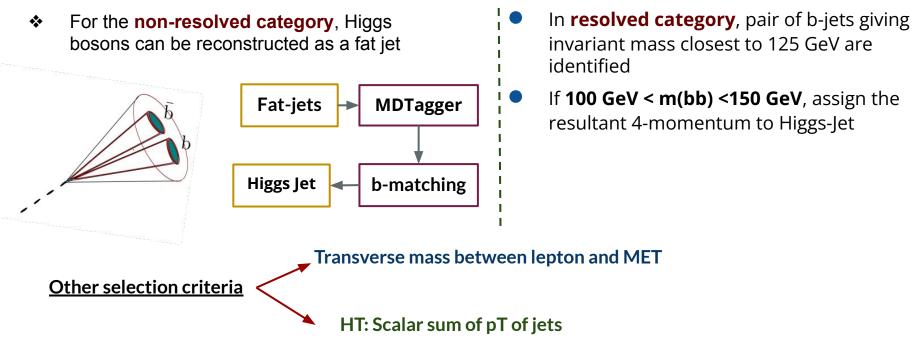

- Bino-dominated LSP with non-negligible Higgsino component
 - \succ Higgsino-like $ilde{\chi}^0_{2,3}$
 - > The gaugino-Higgsino type $g_{h\chi_i\chi_i}$ coupling gets enhanced
- Top-squark dominantly decays to Higgsinos

$$ext{BR}(ilde{ ext{t}}_1 o ilde{\chi}^0_{2,3} + ext{t})$$
 & $ext{BR}(ilde{\chi}^0_{2,3} o ext{h} + ilde{\chi}^0_1)$ dominates

→ A **characteristic feature** of mild-tempered scenario and the allowed BS regions.

LHC implications


Top-squark pair production and cascade decays (This work)



<u>Signal</u>
$\mathrm{h_{bar{b}}} + \ell + \mathrm{E_T} + (\geq 1) \;\mathrm{b-jets}; \;\; \ell = \mathrm{e}, \mu$
Background
${ m p} \; { m p} ightarrow { m tar{t}}(1\ell), \; { m tar{t}}(2\ell), \; { m tar{t}}{ m h}, \; { m tar{t}}{ m Z}, \; { m tar{t}}{ m bar{b}}$

- → Resolved category : Higgs not boosted, b-jets are separated
- → Non-resolved category: Higgs is boosted, b-jets are collimated

LHC Implications (contd.)

Signal significances (cut-based method)

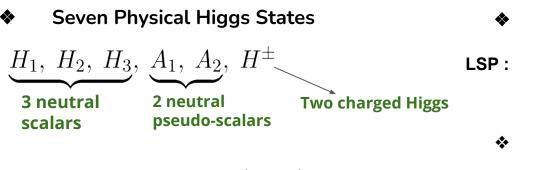
- For non-resolved category, a significance of 1-3 σ can be achieved at luminosity 300 fb⁻¹
- For resolved category, this amounts to 4-7 σ at luminosity 300 fb⁻¹

Multivariate analysis

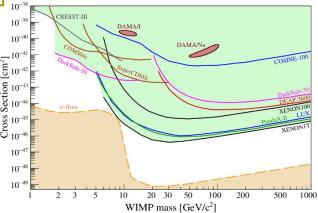
- Employing MVA, sensitivity was found to be increased 4-5 times
- → Prospects of somewhat similar analysis with strong production and cascade decay in extended SUSY model (NMSSM) is going on, where there are extra light Higgs bosons carrying NMSSM specific signature.

Light thermal dark matter

Q. Is it possible to have a thermal DM of mass around 2-20 GeV?

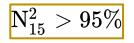

Not MSSM

Rough Lower mass bound on MSSM neutralino DM is ~34 GeV (Phys. Rev. D 95, 095018 (2017))


Any other model ?

- > Maybe DM is SM **singlet**, **inert to SM fermions or gauge bosons**
- > This is natural in NMSSM when DM is **singlino-like neutralino**
- > The **singlino-like LSP** can be **very light** in the allowed parameter space of **NMSSM**

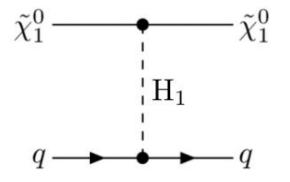
Light Higgs bosons and neutralinos


- Two of the Higgs bosons (A₁, H₁) can be light
- Can be still allowed by data if they are singlet-like

Five neutralino states

LSP: $\widetilde{\chi_1^0} = N_{11}\widetilde{B} + N_{12}\widetilde{W} + N_{13}\widetilde{H_u} + N_{14}\widetilde{H_d} + N_{15}\widetilde{S}$

 The LSP can be below 20 GeV only if they are Singlino-like


DM annihilation and scattering

• We need singlet-like Higgs boson states with mass :

$${
m m_{A_1/H_1}}\simeq 2{
m m_{ ilde{\chi}_1^0}}$$

- There is **cubic coupling of singlet superfield** which makes this effective
- Corresponding **coupling parameter K** becomes very important
- Approximate coupling :

- DM nucleon scattering
 - The **singlet-like CP-even Higgs** also takes part in DM-nucleon scattering
 - The **smallness of kappa plays a important role** to keep it enough small to satisfy DD bounds

LHC Signature

- Singlino DM indirectly produced via production of light singlet Higgs bosons
- Light singlet Higgs bosons act as portal between visible and dark sector
- Decay products from these light Higgs bosons emerge as a single fat jet, reconstructed similarly as before

								,	$\setminus_{\overline{\mathbf{f}}}$	
Moderate (10 GeV < m_{H1} < 30 GeV) and High mass (30 GeV/c m < 60 GeV/region				Low mass region (m _{H1} <10 GeV)						
$\begin{array}{l} \underbrace{(30 \text{ GeV} < m_{\text{H1}} < 60 \text{ GeV})\text{region}}_{\textbf{Signal}} \\ \textbf{Signal} \\ \textbf{J}_{b\bar{b}} + \!$				 ττ decay mode of light Higgs get enhanced At this very low pT, hadronic decay mode of τ suffers from large background of QCD We consider leptonic decay mode of τ 						
b) with $30 < \mathrm{m_{J_{b\bar{b}}}} < 60~\mathrm{Ge}$	V for high mass range		<u>Sig</u>	nal	$\ell^+\ell$	$\mathbf{F}^{-} + \mathbf{E}$	$L_{T} + \geq$	<u>≥</u> 1 j		
$rac{ extsf{Dominating}}{ extsf{backgrounds}} extsf{t}, extsf{Wb} ar{ extsf{b}} + ar{ extsf{t}}$	${ m ets,~Zbar{b}+jets}$			nating rounds		${ m l-Yan} + { m jets}$	$, t \overline{t}, W$	+ jets	, WW + je	ets,
Also checked WH_{SM} + jets, ZH_{SM} + jets, WZ + jets, ZZ + jets				Also checked $~~\Upsilon~{ m and}~{ m J}/\psi,~{ m ZZ+jets},~{ m ZH_{SM}+jets}$						jets
		BP1	BP2	BP3	BP4	BP5	BP6]		
Cignol Consitivity	$\frac{\frac{\mathrm{S}}{\sqrt{\mathrm{B}}}(\mathcal{L}=300 \text{ fb}^{-1})}{\frac{\mathrm{S}}{\sqrt{\mathrm{B}}}(\mathcal{L}=3000 \text{ fb}^{-1})}$	6	11	14	8	7	3.5	-		
<u>Signal Sensitivity</u>	$\frac{\dot{\mathrm{S}}^{-}}{\sqrt{\mathrm{B}}}(\mathcal{L}=3000~\mathrm{fb}^{-1})$	19	35	44	25	22	11			

Low mass

 H_1/A

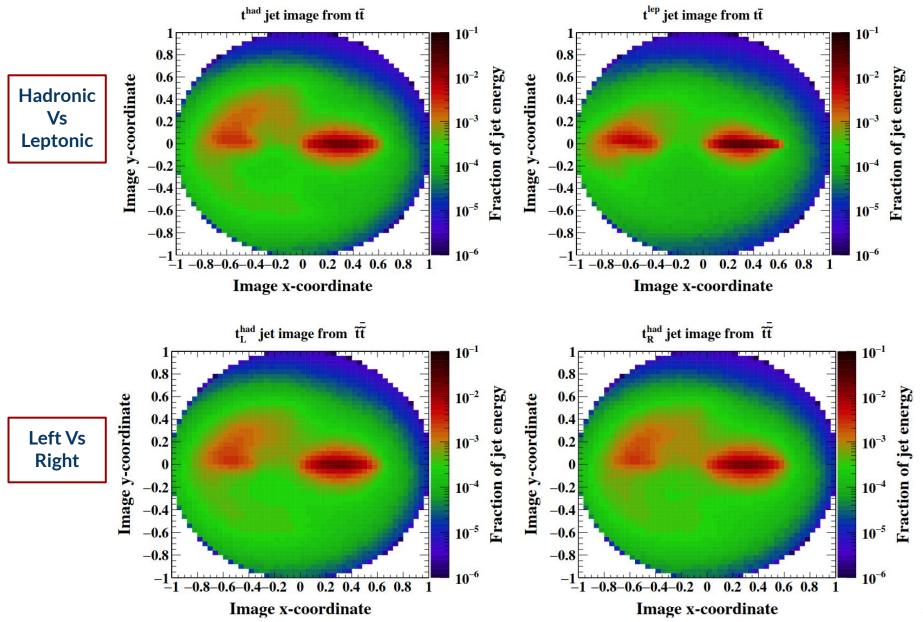
 H_1/A

 H_{sm}

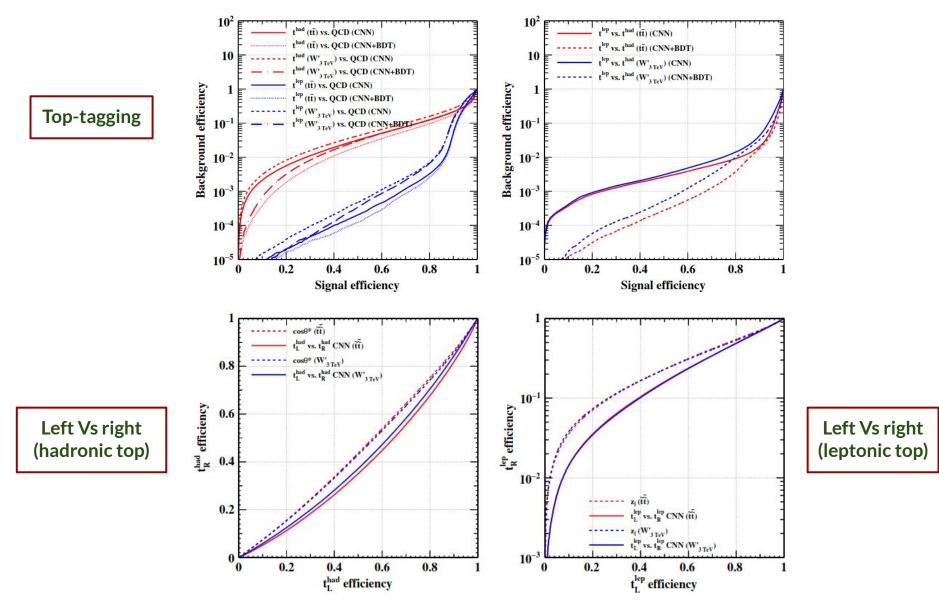
High mass

00000

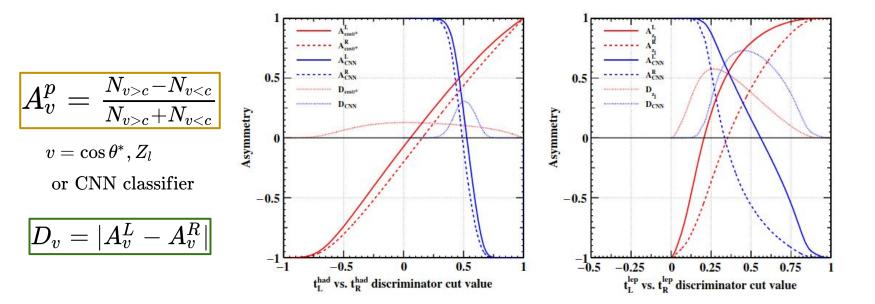
00000


Moderate mass

ML techniques for Top-tagging


Based on S. Bhattacharya, M. Guchait, A. Vijay *Phys.Rev.D* 105 (2022) 4, 042005

- **Top quark** is an important and interesting object to study at the LHC
- Techniques for Tagging top jets in hadronic and leptonic decay are already in literature (Godbole, Guchait, Vijay et al. 2019; Chatterjee, Godbole, Roy. 2019)
- ✤ In SM:
 - > **Pair production**: top quarks are **unpolarized** (vector nature of the QCD couplings).
 - Single top: top quarks are left-handed (V A nature of the t-b-W coupling).
- Any change to structure of the interaction leads to change in the polarization of the produced top quark.
- Hence, the polarization of top quarks serves as a promising window for exploring the existence and nature of new physics
- Measuring the polarization of boosted top quark jets in colliders is quite challenging some studies have already explored different kinematic variables for this purpose. (Godbole, Guchait, Vijay et al. 2019)
- This paper describes the use of an image-based convolutional neural network (CNN) for tagging boosted top-jet and detecting the polarization in both hadronic and leptonic case


Jet images (example)

Performances of the CNN

Asymmetry measurements

<u>Notes</u>

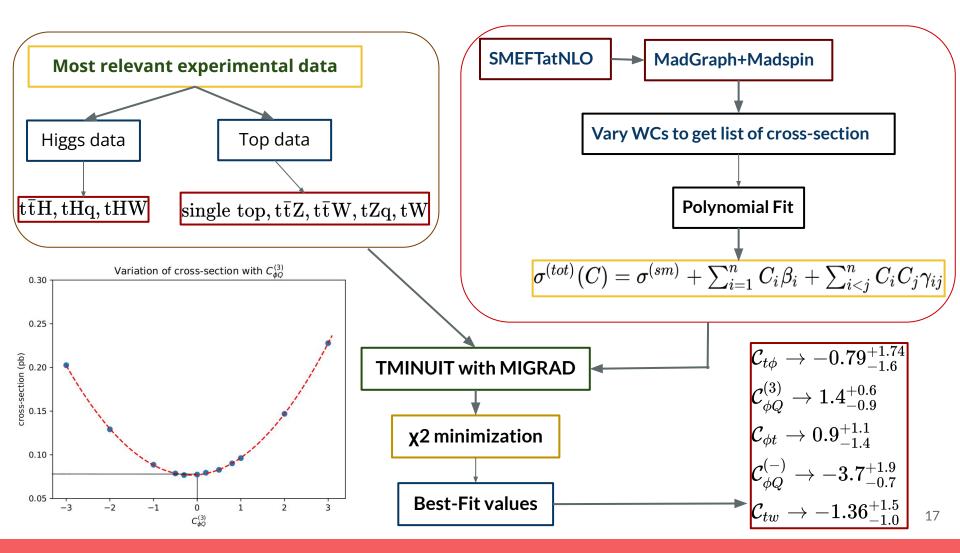
- There are usual kinematic polarimeter variables present in the literature
- For example $\mathbf{Cos}\theta^*$, \mathbf{Z}_1 etc.

This CNN-based tagger has better sensitivity to polarization than these usual variables

Effective Field Theory

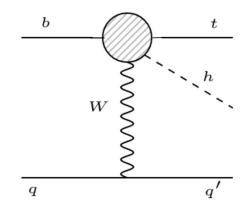
Work in progress, to be arxived soon...

- The **SM has been successful**, compatible with all experimental measurements, and no evidence of light states are present till now
- This indicates **BSM physics** may reside at somewhat higher scale
- This motivates to interpret deviations from the dim=4 SM Lagrangian predictions in terms of an EFT:


$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2}\sum_{i=1}^{N_{d6}}C_i^{(6)}\mathcal{O}_i^{(6)}$$

- There can be **59 independent set of operators** in dim=6 EFT expansion
- In this work, we focus on operators related to the tHq process and mainly affecting top-Higgs coupling which can be a sensitive probe for new physics having close relation to EWSB
- We focus on five SMEFT operators

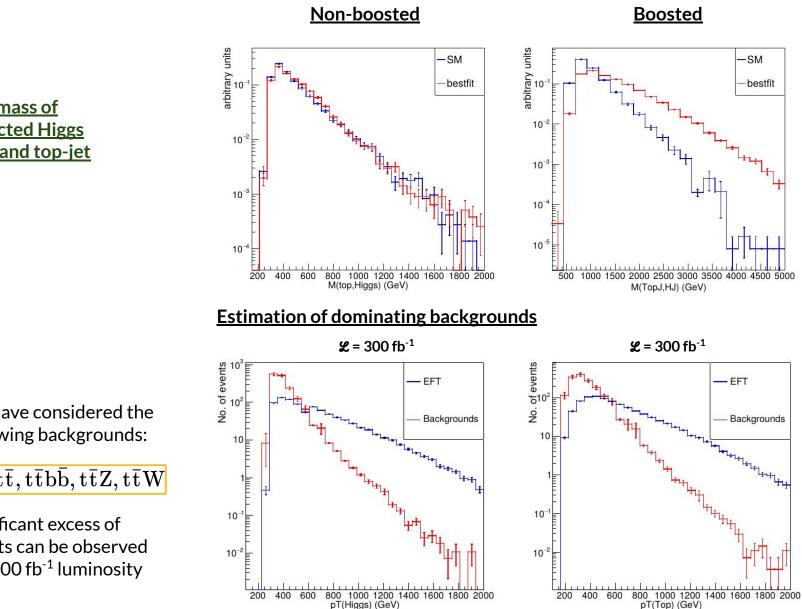
$$\mathcal{O}_{t\phi}, \mathcal{O}_{\phi t}, \mathcal{O}_{pQ}^{(3)}, \mathcal{O}_{tw}, \mathcal{O}_{\phi Q}^{(-)} \equiv \mathcal{O}_{\phi Q}^{(1)} - \mathcal{O}_{\phi Q}^{(3)}$$


Constraining ranges of the WCs

- There exists constraints from global fits of operators
- Some recent measurements sensitive to tHq process are not included
- We try to find a complementary approach of constraining with a subset of data which are most relevant and recent

Implications at the LHC

- → Unlike other processes like tth, ggh etc., thq poses the bw→ tH scattering sub amplitude
- → This results in an energy growth for specific operators
- → We use **H**→**bb decay mode**
- → We consider hadronic decay mode of Top-quark


Simulation

Event selection

- → One reconstructed Higgs Jet
 - For boosted region, tagging **AK8 fat-jets with two b-like subjects** and **[100,150]** mass window
 - For non-boosted region, using combination of AK4 b-jets
- → One reconstructed Top Jet
 - Using **HEPTopTagger**, in boosted region
- → At least one extra AK4 jet with pT>30 GeV

Distributions at reconstructed level

Invariant mass of reconstructed Higgs boson Jet and top-jet

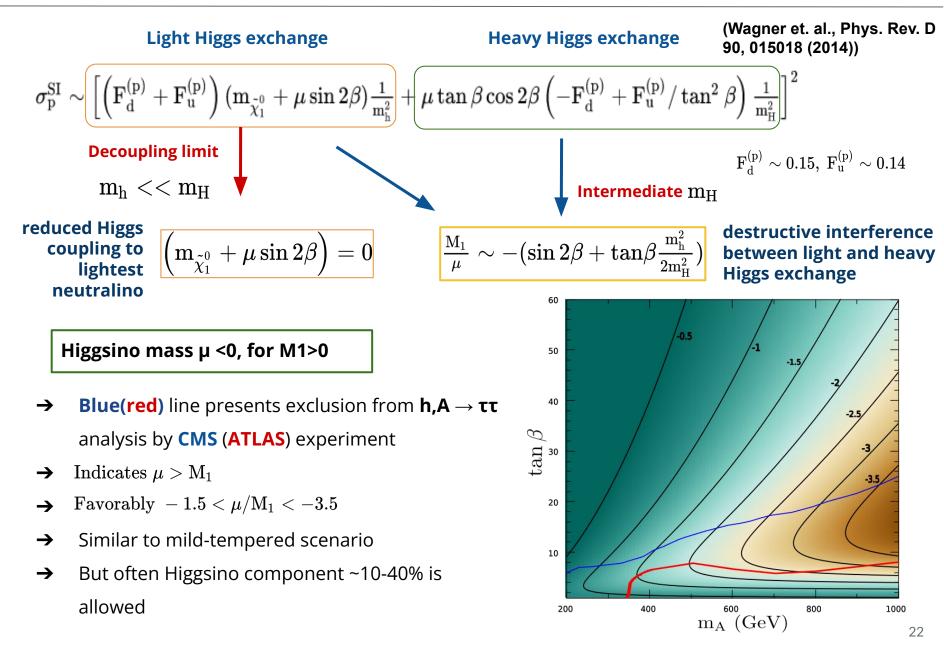
We have considered the * following backgrounds:

${f t}ar t{f H}, {f t}ar t, {f t}ar t{f b}ar b, {f t}ar t{f Z}, {f t}ar t{f W}$

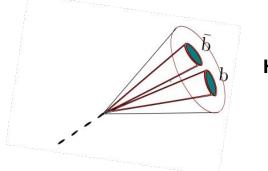
Significant excess of * events can be observed at 3000 fb⁻¹ luminosity

✤ <u>Dark matter</u>

- Various possibilities of DM from GeV scale to 100 GeV scale is explored and sensitive search processes were proposed.
- ✤ <u>Top-tagging</u>
 - Efficient image-based top-tagger using CNN is constructed having interesting capabilities to distinguish top polarization.
- * <u>EFT</u>
 - A set of SMEFT operators related to tHq production is constrained and their effects on kinematic distributions are explored.

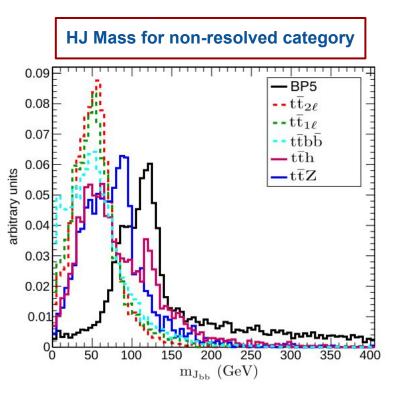

<u>Future plan</u>

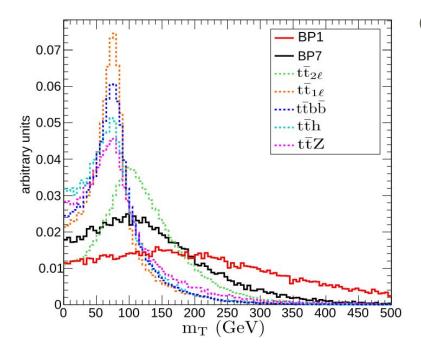
- Collider prospects of Asymmetric Dark Matter (ADM)
- Using ML techniques to probe compressed SUSY scenarios


Back Up

Blind Spots in Dark Matter Direct Detection

For the **non-resolved category**, Higgs bosons can be reconstructed as a fat jet

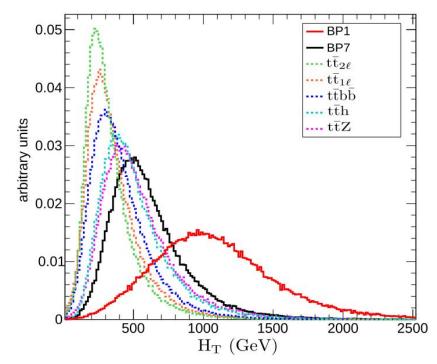

Higgs Fat Jet


- Used **MDTagger** to get tagged fat jet with two subjets
- Subjets are matched with b-quarks of the event

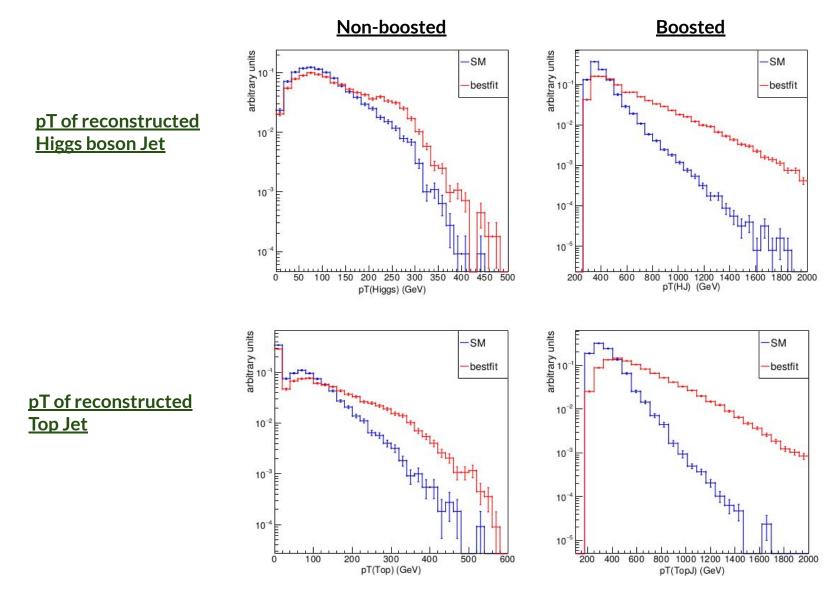
- HJ with a specific mass requirement is a very important feature of our signal
- Substantially different for backgrounds and signal processes
- Less effective only for tth background

$${
m m_{J_{b\bar{b}}}} \ge 100~{
m GeV}$$

- In resolved category, pair of b-jets giving invariant mass closest to 125 GeV are identified
- If 100 GeV < m(bb) <150 GeV, assign the resultant 4-momentum to Higgs-Jet</p>

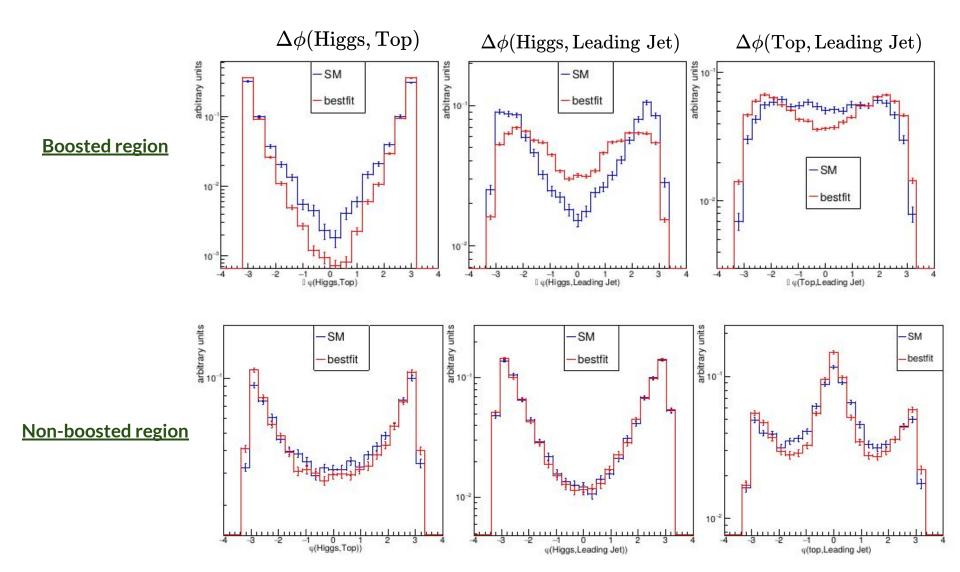


HT : scalar sum of pT of all jets except those constitute HJ


$$m H_T \geq 500~GeV$$

Transverse mass between lepton and MET

$$\mathrm{m_{T}}(\ell, E_{\mathrm{T}}) = \sqrt{2 imes \mathrm{p}_{\mathrm{T}}^{\ell} imes E_{\mathrm{T}} imes (1 - \cos \phi(\ell, E_{\mathrm{T}}))}$$



Distributions at reconstructed level

Significant deviations are observed at the Boosted category

Angular distributions

The angular distribution (in the top rest frame) of the top decay products is given * by [Jezabek and Kuhn, 1989]:

$$rac{1}{\Gamma} rac{\mathrm{d}\Gamma}{\mathrm{d}\mathrm{cos} heta_\mathrm{f}} = rac{1}{2}(1+\mathrm{P}_0\kappa_\mathrm{f}\mathrm{cos} heta_\mathrm{f})$$

- → f=u.d.b.W
- → P₀ = Polarization of the top quark (-1≤P₀≤+1)
 → θ_f = Angle b/w fermion (or W) and top spin direction in the top rest frame
- → κ_f = Spin analyzing power (+1, -0.3, -0.4, +0.4 for f = d, u, b, W)

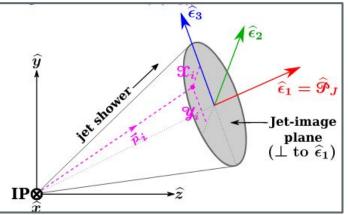
For L-handed hadronic top guarks ($P_0 = -1$): the b and u guarks are more likely to be * aligned with the top spin (in the top rest frame), and hence more boosted (less separated) in the lab frame.

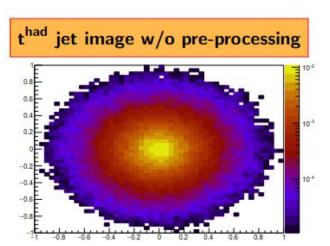
For R-handed hadronic top guarks (Po = +1): the d guark is more likely to be aligned * with the top spin (in the top rest frame), and hence more boosted in the lab frame.

- Similarly for L-handed (R-handed) leptonic top guarks the b guark (lepton) will be * harder.
- Thus the kinematics of the decay products from L and R-handed top quarks will differ and * can exploit this difference in the jet images.

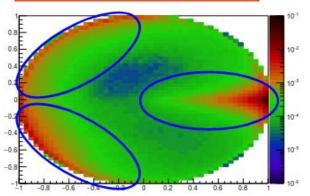
Jet image formation (pre-processing)

Mass re-scaling and Lorentz boosting

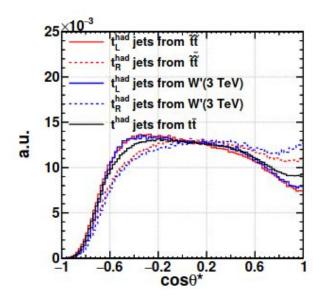

- Follows the technique described in 1903.02032.
 - 1. The jet 4-mom is rescaled such its mass is $m_{_{\rm B}}$.

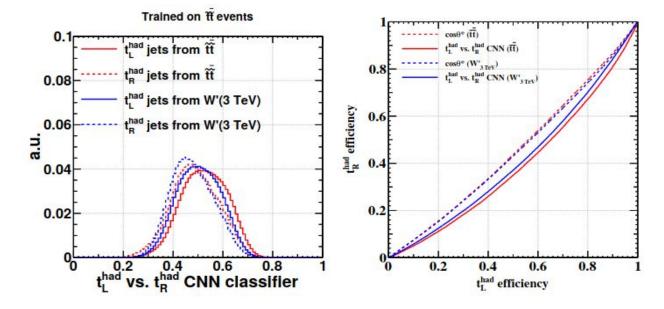

2. The **jet is then Lorentz boosted** to a frame in which its energy is E_B .

- The ratio of these two parameters (γ_B = m_B/E_B) important, and not their absolute values.
- We have chosen $\gamma B = 2$ (fairly optimal).


Gram-schmidt transformation

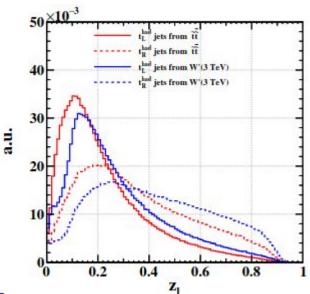
- For a given jet-constituent's 4-mom pi , image coordinates are (Xi , Yi).
- ➤ Image size: 50×50 pixels
- Color axis: Constituent energy / jet energy

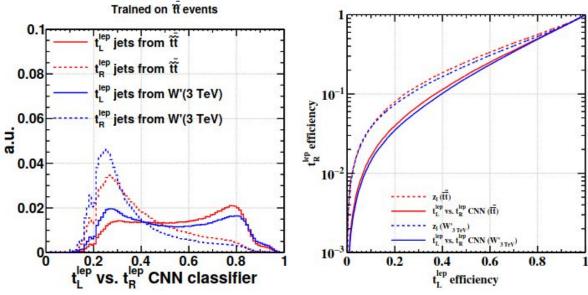



Hadronic top polarisation

- Train on hadronic t_L jets (from t̃_L t̃_L)Vs t_R jets (from t̃_R t̃_R)
 cos θ* is a kinematic variable that is shown to be quite sensitive to
- $\cos \theta^*$ is a kinematic variable that is shown to be quite sensitive to polarization [Godbole, Guchait et al., 2019].
 - It's the (cosine of) angle b/w the top jet (in the lab frame) and the d-like sub-jet momenta (in the top-rest frame):

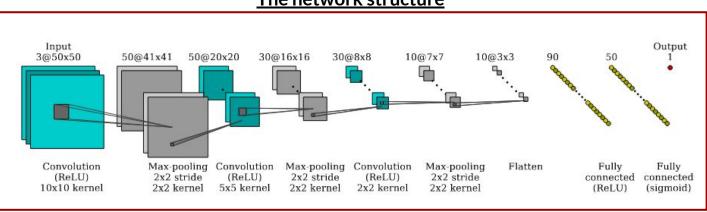
$$\cos heta^{*} = rac{ec{ extsf{j}_{ extsf{t}}} ec{ extsf{j}_{ extsf{t}}} ec{ extsf{j}_{ extsf{d}}} extsf{j}_{ e$$


• The CNN outperforms $\cos \theta^*$



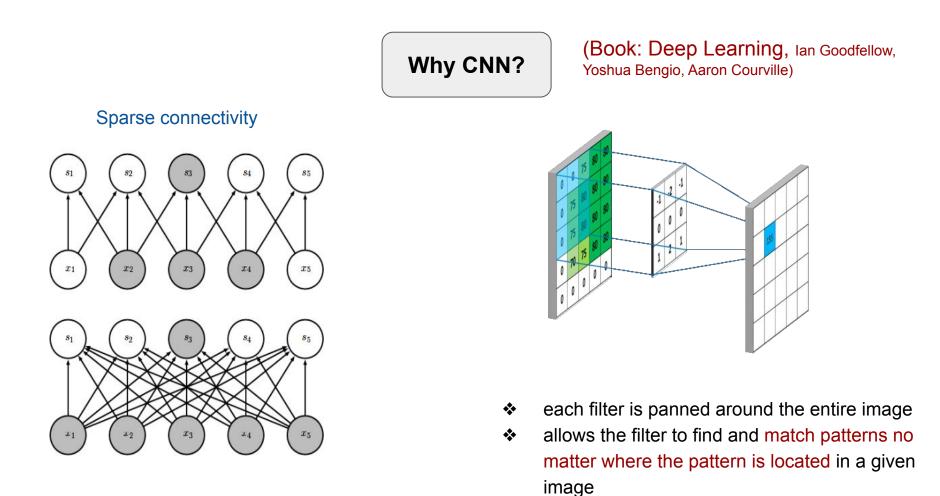
Leptonic top polarisation

- ♦ Train on leptonic t_L jets (from $\tilde{t}_L \bar{\tilde{t}}_L$)Vs t_R jets (from $\tilde{t}_R \bar{\tilde{t}}_R$)
- * Z_{ℓ} is a kinematic variable that is shown to be quite sensitive to polarization [Godbole, Guchait et al., 2019].
 - > It's the lepton energy fraction within the top-jet.



Technical details for CNN

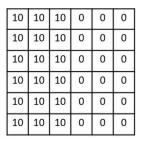
 $egin{aligned} & ilde{ extsf{t}}\, ilde{ extsf{t}}\,(ilde{ extsf{t}}
ightarrow extsf{t}\chi^0_1, \mathrm{m}_{ ilde{ extsf{t}}}\,=\,1~ extsf{TeV}, \mathrm{m}_{ ilde{\chi}^0_1}\,=\,100~ extsf{GeV}) \ & extsf{W}'(\mathrm{W}'
ightarrow extsf{tb}, \mathrm{m}_{\mathrm{W}'}\,=\,3~ extsf{TeV}) \ & extsf{t} extsf{ and } \mathrm{QCD}(\hat{ extsf{p}}^{\min}_{\mathrm{T}}\,=\,400~ extsf{GeV}) \end{aligned}$


 $\mathrm{MadGraph}(\mathrm{Madspin})
ightarrow \mathrm{PYTHIA8}
ightarrow \mathrm{Delphes}(\mathrm{CMS}\,\,\mathrm{card})$

- Jet Formation
 - Anti-KT jets with R=1.5, pT > 200 GeV, |η|<2.4</p>
 - > **Soft-drop** applied with $z_{cut}=0.1$, $\beta = 0$
 - ΔR matched with gen-level hadronic (leptonic) top-quarks to confirm hadronic(leptonic) top-jets

The network structure

• Input has three channels corresponding to the three jet components (tracks, photons, neutral hadrons).



- spatial information is lost when the image is flattened (matrix to vector) into an MLP
- amount of weights rapidly becomes unmanageable for large images

 panning of filters in CNN essentially allows parameter sharing, weight sharing

Translational invariance, parameter sharing

*

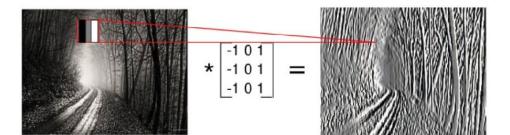
1 0 -1 1 0 -1 3 x 3

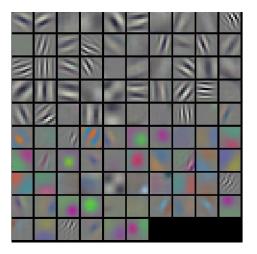
=

1 0 -1

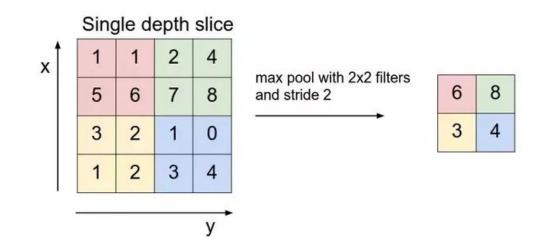
-0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

4 x 4


Reduction in Dimension


N x N image F x F filter N x N \longrightarrow (N-F+1) x (N-F+1)

6 x 6



Pooling

• Stride : Number of pixels/blocks to shift around

- pooling layer serves to progressively reduce the spatial size of the representation to reduce the number of parameters, memory footprint and amount of computation in the network.
- But while doing so it notes down the particular features too.

• One can interpret deviations from the dim=4 SM Lagrangian predictions in terms of an EFT:

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \sum_{i=1}^{N_{d6}} C_i^{(6)} \mathcal{O}_i^{(6)}$$

- There can be 59 independent set of operators in dim=6 EFT expansion
- In this work, we focus on operators related to the tHq process and mainly affecting top-Higgs coupling
- **Symmetry assumption**, to focus on top quark related operators

$$U(3)_l imes U(3)_e imes U(2)_Q imes U(2)_u imes U(3)_d\equiv U(2)^2 imes U(3)^3$$

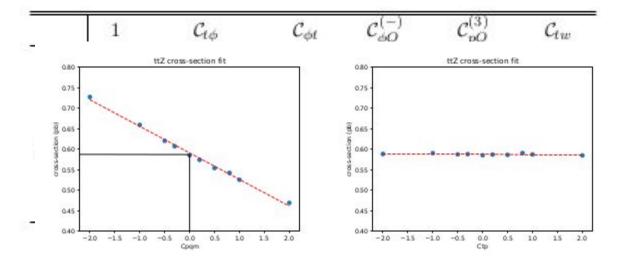
<u>Relevant operators</u>

Operator	Coefficient	Definition	Vertex	Sensitive production processes
$\mathcal{O}_{t\phi}$	$C_{t\phi}$	$(\phi^{\dagger}\phi - v^2/2)\bar{Q}t\tilde{\phi}$	$t\bar{t}H$	ttH, tHq
$\mathcal{O}_{\phi t}$	$C_{\phi t}$	$i(\phi^{\dagger}\overleftrightarrow{D_{\mu}}\phi)\overline{t}\gamma^{\mu}t$	$t\bar{t}H,t\bar{t}V$	$t\bar{t}H, tHq, tj, tV, t\bar{t}Z$
$\mathcal{O}_{\phi Q}^{(1)}$	$C_{\phi Q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D_{\mu}}\phi)\overline{Q}\gamma^{\mu}Q$	$\rm t\bar{t}H, \rm Wtb$	$t\bar{t}H$, tHq , tj , tV , $t\bar{t}V$
$\mathcal{O}_{\phi Q}^{(1)} \ \mathcal{O}_{pQ}^{(3)}$	$\begin{array}{c}C^{(1)}_{\phi Q}\\C^{(3)}_{\phi Q}\end{array}$	$i(\phi^{\dagger}\overleftrightarrow{D_{\mu}}\tau_{I}\phi)\overline{Q}\gamma^{\mu}\tau^{I}Q$	$t\bar{t}H,Wtb$	$t\bar{t}H$, tHq , tj , tV , $t\bar{t}V$
\mathcal{O}_{tw}	C_{tW}	$i(\bar{Q}\sigma^{\mu u} au_I t)\tilde{\phi}W^I_{\mu u}$	Wtb	$t\bar{t}H$, tHq , tj , tV , $t\bar{t}V$
$\mathcal{O}_{\phi W}$	$C_{\phi W}$	$(\phi^{\dagger}\phi - v^2/2)W^I_{\mu\nu}W^I_{\mu\nu}$	HWW	EWPO, $t\bar{t}H$, tHq
$\mathcal{O}_{\phi D}$	$C_{\phi D}$	$(\phi^{\dagger}D_{\mu}\phi)(\phi^{\dagger}D^{\mu}\phi)$	HWW	EWPO, $t\bar{t}H$, tHq

- The operators affecting HWW vertex are found not to be much sensitive and are constrained mainly by EW
 precision data
- Other five are studied in this work

$$\mathcal{O}_{t\phi}, \mathcal{O}_{\phi t}, \mathcal{O}_{pQ}^{(3)}, \mathcal{O}_{tw}, \mathcal{O}_{\phi Q}^{(-)} \equiv \mathcal{O}_{\phi Q}^{(1)} - \mathcal{O}_{\phi Q}^{(3)}$$

Warsaw basis -I


	X^3		$\varphi^6 ext{ and } \varphi^4 D^2$		$\psi^2 \varphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	Qeq	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$	$\psi^2 X arphi$			$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^{\dagger} arphi W^{I}_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{arphi \widetilde{W}}$	$arphi^{\dagger}arphi \widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\overline{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Warsaw basis -II

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	<i>B</i> -violating					
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$		
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j}) ight]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{quqd}^{(8)}$	그는 김 수 있는 것 같은 것 같		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta}$	$^{3k}]\left[(q_s^{\gamma m})^T C l_t^n ight]$		
$Q_{lequ}^{(1)}$			$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T C u_r^{eta} ight]\left[(u_s^{\gamma})^T C e_t ight]$				
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$						

Coefficients for ttZ

Table 7: The coefficients of various linear and quadratic terms corresponding to the fits for ttZ production cross-section.

Once expres Figure 2: Variation of cross section for $t\bar{t}Z$ production with insertion of $C_{\phi Q}^{(-)}$ (left) and $C_{t\phi}$ (ction as, (right), fitted with a linear polynomial.

$$\chi^2(\vec{C}) = \frac{1}{N_{dat}} \sum_{i,j=1}^{N_{dat}} \left(\sigma_i^{exp} - \sigma_i^{(th)}(\vec{C}) \right) \operatorname{Cov}_{ij}^{-1} \left(\sigma_j^{exp} - \sigma_j^{(th)}(\vec{C}) \right).$$
(2.13)

Other Fits

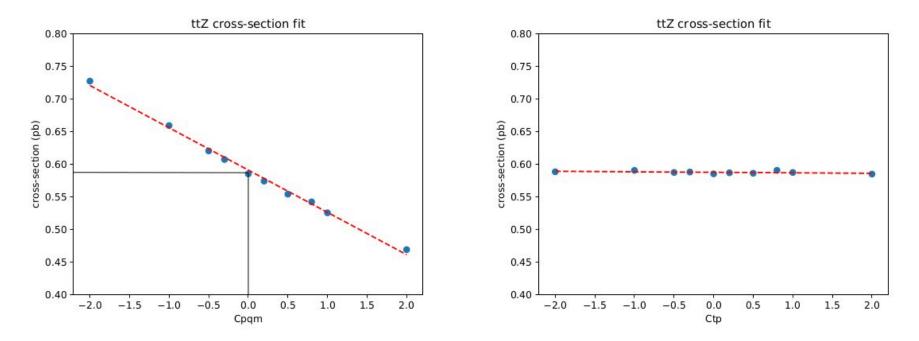


Figure 2: Variation of cross section for $t\bar{t}Z$ production with insertion of $C_{\phi Q}^{(-)}$ (left) and $C_{t\phi}$ (right), fitted with a linear polynomial.

Observable expression -I

In the framework of EFT expansion, using Eq. 2.6, we can write both the production cross-section and decay width in the following form,

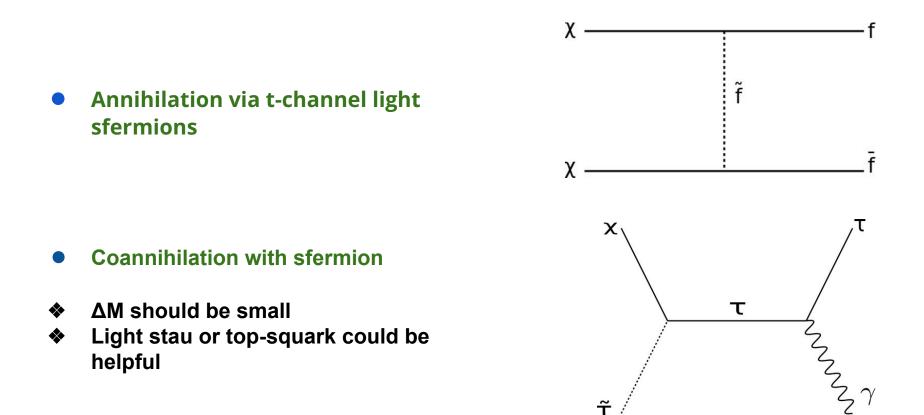
$$\sigma^{(EFT)}(pp \to h)(\vec{C}) = \sigma^{(SM)} + \sum_{i=1}^{n} a_i^{\sigma} c_i + \sum_{i

$$\Gamma^{(EFT)}(\vec{C}) = \Gamma^{(SM)} + \sum_{i=1}^{n} \Gamma_{ij} + \sum_{i$$$$

$$\Gamma_x^{(EFT)}(\vec{C}) = \Gamma_x^{(SM)} + \sum_{i=1} a_i^{\Gamma} c_i + \sum_{i< j} b_{ij}^{\Gamma} c_i c_j, \qquad (4.16)$$

where, a_i^{σ} and b_{ij}^{σ} are polynomial coefficients for production, while a_i^{Γ} and b_{ij}^{Γ} are those for decay width. Using Eq. 2.8 4.15 and 4.16 one can write,

$$\begin{split} \mu_{xx}^{(th)}(\vec{C}) &= \left(\frac{\sigma^{(SM)} + \sum_{i=1}^{N} a_i^{\sigma} c_i + \sum_{j < k} b_{jk}^{\sigma} c_j c_k}{\sigma^{SM}}\right) \times \left(\frac{\Gamma_x^{(SM)} + \sum_{l=1}^{N} a_l^{\Gamma_x} c_l + \sum_{m < n} b_{mn}^{\Gamma_x} c_m c_n}{\Gamma_x^{(SM)}}\right) \\ &\times \left(\frac{\sum_y \left(\Gamma_y^{(SM)} + \sum_{r=1}^{N} a_r^{\Gamma_y} c_r + \sum_{s < t} b_{st}^{\Gamma_y} c_s c_t\right)}{\sum_y \Gamma_z^{(SM)}}\right) \\ &= \left(1 + \sum_i \left(\frac{a_i^{\sigma}}{\sigma^{SM}}\right) c_i + \sum_{j < k} \left(\frac{b_{jk}^{\sigma}}{\sigma^{SM}}\right) c_j c_k\right) \times \left(1 + \sum_l \left(\frac{a_l^{\Gamma_x}}{\Gamma_x^{SM}}\right) c_l + \sum_{m < n} \left(\frac{b_{mn}^{\Gamma_x}}{\Gamma_x^{SM}}\right) c_m c_n\right) \\ &\times \left(\sum_y \left[\frac{\Gamma_y^{SM}}{\Gamma_{(tot)}^{SM}} + \sum_r \left(\frac{a_r^{\Gamma_y}}{\Gamma_{(tot)}^{SM}}\right) c_r + \sum_{s < t} \left(\frac{b_{st}^{\Gamma_y}}{\Gamma_{(tot)}^{SM}}\right) c_s c_t\right]\right)^{-1} \end{split}$$


40

Observable expression - II

$$\begin{split} = \left(1 + \sum_{i} \left(\frac{a_{i}^{\sigma}}{\sigma^{SM}}\right) c_{i} + \sum_{j < k} \left(\frac{b_{jk}^{\sigma}}{\sigma^{SM}}\right) c_{j} c_{k}\right) \times \left(1 + \sum_{l} \left(\frac{a_{l}^{\Gamma_{x}}}{\Gamma_{x}^{SM}}\right) c_{l} + \sum_{m < n} \left(\frac{b_{mn}^{\Gamma_{x}}}{\Gamma_{x}^{SM}}\right) c_{m} c_{n}\right) \\ \times \left(\sum_{y} \left[\frac{\Gamma_{y}^{SM}}{\Gamma_{(tot)}^{SM}} + \sum_{r} \left(\frac{a_{r}^{\Gamma_{y}}}{\Gamma_{(tot)}^{SM}}\right) c_{r} + \sum_{s < t} \left(\frac{b_{st}^{\Gamma_{y}}}{\Gamma_{(tot)}^{SM}}\right) c_{s} c_{t}\right]\right)^{-1} \\ = \left(1 + \sum_{i} \left(\frac{a_{i}^{\sigma}}{\sigma^{SM}}\right) c_{i} + \sum_{j < k} \left(\frac{b_{jk}^{\sigma}}{\sigma^{SM}}\right) c_{j} c_{k}\right) \times \left(1 + \sum_{l} \left(\frac{a_{l}^{\Gamma_{x}}}{\Gamma_{x}^{SM}}\right) c_{l} + \sum_{m < n} \left(\frac{b_{mn}^{\Gamma_{x}}}{\Gamma_{x}^{SM}}\right) c_{m} c_{n}\right) \\ \times \left(1 - \sum_{y} \left[\sum_{r} \left(\frac{a_{r}^{\Gamma_{y}}}{\Gamma_{(tot)}^{SM}}\right) c_{r} + \sum_{s < t} \left(\frac{b_{st}^{\Gamma_{y}}}{\Gamma_{st}^{SM}}\right) c_{s} c_{t}\right]\right) \end{split}$$

$$= 1 + \sum_{i} c_{i} \left[\frac{a_{i}^{\sigma}}{\sigma^{SM}} + \frac{a_{i}^{\Gamma_{x}}}{\Gamma_{x}^{SM}} - \sum_{y} \left(\frac{a_{i}^{\Gamma_{y}}}{\Gamma_{(tot)}^{SM}} \right) \right] + \sum_{j < k} c_{j} c_{k} \left[\left(\frac{a_{j}^{\sigma} a_{k}^{\Gamma_{x}}}{\sigma^{SM}} \right) - \sum_{y} \left(\frac{a_{j}^{\sigma} a_{k}^{\Gamma_{y}}}{\sigma^{SM} \Gamma_{(tot)}^{SM}} \right) - \sum_{y} \left(\frac{a_{j}^{\sigma} a_{k}^{\Gamma_{y}}}{\Gamma_{x}^{SM} \Gamma_{(tot)}^{SM}} \right) + \frac{b_{jk}^{\sigma}}{\sigma^{SM}} + \frac{b_{jk}^{\Gamma_{x}}}{\Gamma_{x}^{SM}} - \sum_{y} \left(\frac{b_{jk}^{\Gamma_{y}}}{\Gamma_{(tot)}^{SM}} \right) \right]$$
$$= 1 + \sum_{i} A_{i} c_{i} + \sum_{j < k} B_{jk} c_{i} c_{j}. \tag{4.17}$$

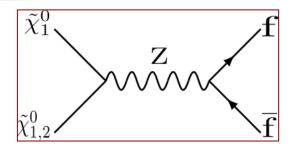
Bino Annihilation

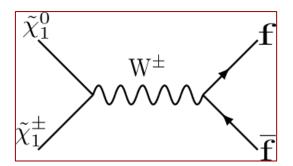
- → None are efficient unless sfermions are light ~100 GeV or ΔM is less
- But presence of non-negligible Higgsino content can help in s-channel annihilation through Higgs or Z

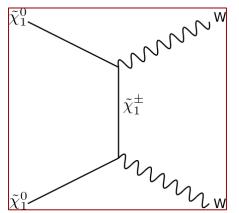
Higgsino/Wino annihilation

$${
m g}_{{
m Z} ilde{\chi}_{1}^{0} ilde{\chi}_{2}^{0}}=rac{{
m g}}{2\cos heta_{
m w}}({
m N}_{13}{
m N}_{23}-{
m N}_{14}{
m N}_{24})$$

$${
m g}_{{
m W}^{\pm} ilde{\chi}_{1}^{0} ilde{\chi}_{1}^{\pm}}=rac{{
m g} an heta_{
m W}}{\sqrt{2}}({
m N}_{14}{
m V}_{12}^{*}-\sqrt{2}{
m N}_{12}{
m V}_{11}^{*})$$

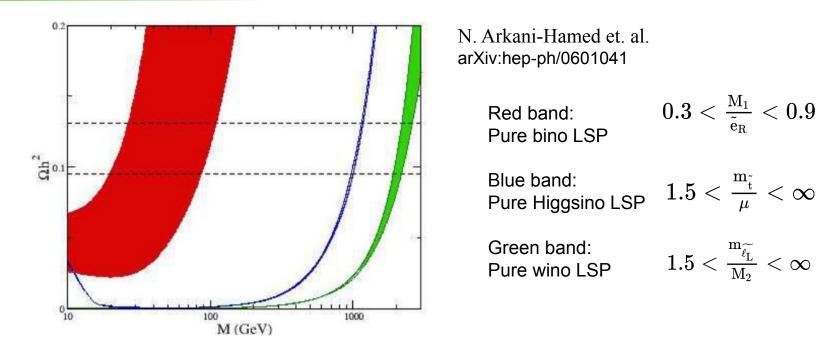

Annihilation into fermion pairs


Coannihilation with neutralino/chargino


- Both are Higgsino/wino-like
- Nearly mass degenerate

Annihilation into W pairs

- → Very efficient annihilation mechanisms
- → Under-abundance of relic density



A non-negligible bino/wino content in Higgsino enhances S-channel annihilation to fermions

Tempered neutralino

- A pure Higgsino/Wino of mass ~100 GeV is not suitable for DM
- Unless sfermions are light, pure bino leads to overabundance of relic density.

Tempered neutralino is the solution to achieve right relic density !!

Is it compatible with limits from direct detection experiments?

Representative Benchmark Points

	BP1	BP2	BP3	BP4(BS)	$BP5(\mathbf{BS})$	BP6	BP7	$\operatorname{BP8}(\mathbf{BS})$	BP9(BS
M_1	60.8	58.5	274.2	334.1	296.4	204.9	352.7	238.4	248.4
M_2	2784.4	2102.4	2719.2	1438.5	1494.1	1093.6	1860.2	1561.4	1071.0
μ	655.6	793.6	984.1	-789.8	-717.5	-489.1	-610.2	-414.2	-539.9
m_A	1252.7	953.2	584.1	712.7	585.6	453.9	762.1	459.3	543.8
$ an\!eta$	7.5	6.0	6.6	6.1	6.2	5.0	5.8	6.3	6.7
M_{Q_3}	856.2	1102.2	2277.6	1024.8	1544.2	770.1	824.4	765.8	811.5
${ m M_{t_R}}$	3552.0	1889	1688.8	2403.3	2061.9	2381.8	2596.2	2088.9	2634.1
$m_{\widetilde{t_1}}$	954	1059	1675	1038	1475	688	804	635	765
$m_{\widetilde{\chi}^0_3}$	666	802	996	800	729	494	620	424	550
$m_{\tilde{\chi}_2^0}$	666	800	994	796	725	499	618	422	545
$m_{\tilde{\chi}_1^0}$	59	58	272	335	295	207	354	238	249
$\mathrm{m}_{\tilde{\chi}_{1}^{\pm}}$	664	799	993	795	725	495	618	420	545
mh	125	123	123	125	124	123	123	124	125
$m_{\rm H}$	1253	953	584	713	584	454	763	460	544
N_{11}^2	0.995	0.996	0.996	0.996	0.996	0.99	0.99	0.976	0.99
$N_{13}^2 + N_{14}^2$	0.005	0.003	0.003	0.004	0.004	0.01	0.01	0.023	0.01
Ωh^2	0.129	0.122	0.119	0.112	0.121	0.110	0.117	0.119	0.110
$\sigma_{\rm SI}(10^{-11}{\rm pb})$	5.1	5.2	10	0.009	0.02	1.9	2.4	0.69	0.002
$\sigma_{\rm SD}({\rm p})(10^{-7}~{\rm pb})$	7.2	3.2	1.6	5.2	7.5	32	21	100	26
$\sigma_{\rm SD}({\rm n})(10^{-7}~{\rm pb})$	5.7	2.5	1.3	4.1	5.8	25	12	78	20
$BR(\tilde{t}_1 \rightarrow \tilde{\chi}_1^0 + t)$	0.05	0.11	0.16	0.08	0.05	0.11	0.15	0.08	0.08
$BR(\tilde{t}_1 \rightarrow \tilde{\chi}_2^0 + t)$	0.49	0.31	0.20	0.37	0.34	0.32	0.33	0.34	0.33
$BR(\tilde{t}_1 \rightarrow \tilde{\chi}_3^0 + t)$	0.42	0.51	0.22	0.49	0.43	0.49	0.45	0.52	0.50
$BR(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + h)$	0.70	0.73	0.70	0.73	0.72	0.85	0.83	0.78	0.75
$BR(\tilde{\chi}_3^0 \to \tilde{\chi}_1^0 + h)$	0.28	0.27	0.12	0.24	0.25	0.04	0.12	0.09	0.19

Multivariate analysis

Rank	Variable	Description	Rank	Variable	Description
1	m_{h}	Mass of J _{bb}	1	$ \mathbb{E}_{\mathrm{T}} $	Missing p_{T}
2	HT	Scalar sum of p_T of all jets outside J_{bb}	2	$\mathrm{m_{h}}$	Mass of J_{bb}
3			3	$p_{\rm T}(b_1)/p_{\rm T}(b_2)$	pT ratio of two b-jets inside Higgs-jet.
1507	$\Delta R(E_T, J_{bb})$	ΔR between E_T and J_{bb}	4	$\Delta R(b_1,b_2)$	ΔR between two b-jets inside Higgs-jet.
4	$\mathrm{p_{T}(J_{bb})}$	p_T of J_{bb}	5	$\Delta R(E_T, j)$	$\Delta \mathbf{R}$ between $E_{\mathbf{T}}$ and leading jet
5	$ onumber arphi_{\mathrm{T}} onumber$	Missing p_T	6	HT	Scalar sum of p_T of all jets outside J_{bb}
6	$\mathrm{p_T}(\ell)$	p_{T} of leading lepton	7	$\Delta R(\not\!\! E_T,J_{bb})$	ΔR between $\not\!\!E_T$ and J_{bb}
7	$\Delta R(E_T, j)$	ΔR between E_T and leading jet outside J_{bb}	8	$\Delta R(b_1,J_{bb})$	ΔR between leading b-jet (outside $J_{bb})$ and J_{bb}
8	$\Delta R(b_1, J_{bb})$	ΔR between leading b-jet (outside J_{bb}) and J_{bb}	9	Njets	Number of outside J_{bb} .
9	Njets	Number of jets outside J _{bb} .	10	$\mathrm{p_T}(\ell)$	p_{T} of leading lepton
10	$M_T(\ell, E_T)$	Transverse Mass of leading p_T lepton and $\not\!\!E_T$	11	$M_T(\ell, \not\!\!\!E_T)$	Transverse Mass of leading pT lepton and $\not\!$
			12	$p_{\rm T}({ m J}_{ m bb})$	$p_T \text{ of } J_{bb}$
11	$\mathrm{N}(\ell)$	Number of leptons	13	$\mathrm{N}(\ell)$	Number of leptons
12	$p_{T}(b-jet)$	p_{T} of leading b-jet outside J_{bb}	14	N(b-jet)	Number of b-jets, outside J_{bb}
13	N(b-jet)	Number of b-jets, outside J_{bb}	15	$p_{T}(b-jet)$	\mathbf{p}_{T} of leading b-jet outside \mathbf{J}_{bb}

Non-resolved category

Resolved category

- Several kinematical variables are constructed
- Rankings shown are not absolute, but differs on different BPs
- overtraining tests are performed to ensure that there are no significant deviations between the performance of training and testing data
- Method used : BDTG

Flow of cuts (non-resolved category)

	BP1	BP2	BP3	BP4(BS)	$BP5(\mathbf{BS})$	$t\bar{t}(1\ell)$	$t\bar{t}(2\ell)$	$t\bar{t}h$	$t\bar{t}Z$	$t\bar{t}b\bar{b}$
Cross-secton(LO) (fb)	6	3	0.06	3	0.18	178500	36000	400	584	13700
$\not\!\!\!E_{\rm T}>200~{\rm GeV}$	4.9	2.5	0.05	2.4	0.17	2695	592.5	12.6	38.8	186.7
No. of $\ell = 1$	1.5	0.75	0.02	0.7	0.05	1419	291.2	5.1	11.5	71.1
No. of $J_{bb} = 1$	0.4	0.2	0.004	0.2	0.01	33.8	12.1	1.1	0.8	10.6
$m_{J_{\rm bb}} > 100~{\rm GeV}$	0.3	0.15	0.003	0.14	0.008	11.6	2.7	0.7	0.3	2.6
No. of b-jets ≥ 1	0.15	0.08	0.001	0.07	0.003	1.0	0.25	0.3	0.1	0.8
$H_T > 500 \text{ GeV}$	0.1	0.06	0.0008	0.05	0.003	0.25	0.07	0.1	0.05	0.1
$m_{T}(\ell, \not\!\!E_{T}) \geq \!\! 110~{\rm GeV}$	0.08	0.05	0.0006	0.04	0.003	0.04	0.07	0.02	0.006	0.02
$\sigma \times \text{K-factor}$	0.12	0.07	0.001	0.056	0.004	0.06	0.1	0.024	0.008	0.04

→ Signal acceptance = ~1-2 %

→ Background acceptance = ~0.0001%

Sensitivity for points in non-Resolved category

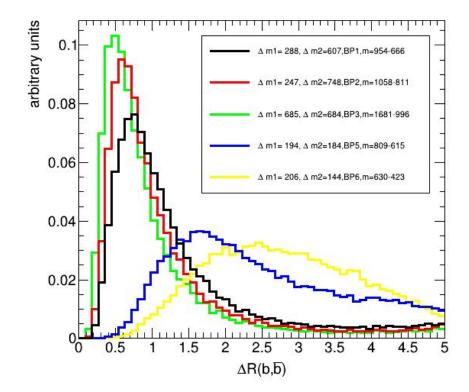
Blind spot

2					
Luminosity (fb^{-1})	BP1	BP2	BP3	BP4	BP5
300	3.5	2.2	0.036	1.8	0.14
3000	11.0	6.9	0.1	5.7	0.44

Flow of cuts (resolved category)

	BP6	BP7	$\mathrm{BP8}(\mathbf{BS})$	BP9(BS)	$t \overline{t}(1 \ell)$	$t\bar{t}(2\ell)$	$t\bar{t}h$	$t\bar{t}Z$	${ m t\bar{t}b\bar{b}}$
Cross-secton (fb)	53	19	91	34	178500	36000	400	584	13700
$\not\!$	31.9	12.2	46.9	25.1	8560	2100	31.3	76.5	555.6
No. of $\ell = 1$	8.7	3.3	12.7	6.8	4364	1050	12.2	23.8	204.1
No. of $J_{bb} = 1$	3.2	1.3	4.2	2.5	564.2	145.9	4.6	3.9	53.3
No. of b-jets ≥ 1	2.3	1.0	2.9	1.9	49.5	11.0	3.6	1.3	35.7
$H_T > 500 \text{ GeV}$	1.3	0.6	1.6	1.2	22.3	3.6	1.7	0.6	11.8
$m_T(\ell, \not\!\!\!E_T) \ge \! 110~GeV$	0.9	0.4	1.1	0.9	5.3	2.4	0.4	0.15	2.6
$\sigma \times \text{K-factor}$	1.28	0.53	1.49	1.22	7.5	3.36	0.43	0.20	4.7

→ Signal acceptance = ~1-3 %


→ Background acceptance = ~0.007%

Sensitivity for points in Resolved category

Δ						8
Blind spot	BP9	BP8	BP7	BP6	Luminosity (fb^{-1})	
	5.0	6.1	2.2	5.3	300	
	15.8	19.2	6.9	16.7	3000	
						33

Significance are higher compared to non-resolved cases due to larger production cross sections

Separation between the two b's from Higgs

Next-to Minimal Supersymmetric Standard Model

NMSSM Superpotential

$$\mathrm{W}_\mathrm{MSSM}(\mu=0)+\lambda\mathrm{SH}_\mathrm{u}\mathrm{H}_\mathrm{d}+rac{1}{3}\kappa\mathrm{S}^3$$

- S gets a VEV :
$$v_s = \langle S
angle$$

We get an effective µ-term
$$~~\lambda v_s {
m H_u H_d}~$$
 , with

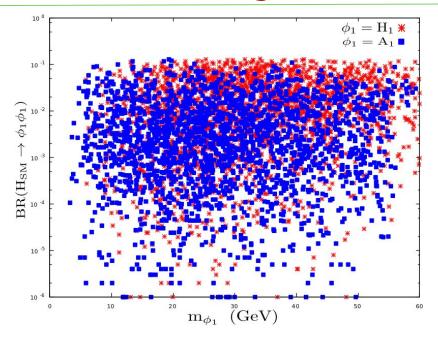
 $\mu_{
m eff} = \lambda v_s extsftarrow$ Solves μ -problem

Also in NMSSM, SM-Higgs mass comes out more naturally than MSSM without requirement of much fine tuning

$$\mathrm{m}_\mathrm{H}^2 \simeq \mathrm{M}_\mathrm{Z}^2 \cos^2 2eta + \lambda^2 \mathrm{v}_\mathrm{s}^2 \sin^2 2eta + \Delta \mathrm{m}_\mathrm{H}^2$$

Nucl. Phys. B860 (2012) 207-244

Light singlino LSP

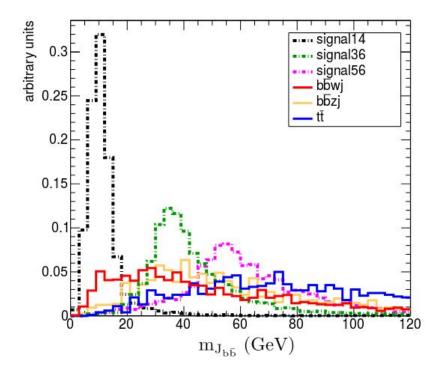

$$\mathrm{M_{N}} = egin{pmatrix} \mathrm{M_{1}} & 0 & rac{-g_{1}vs_{eta}}{\sqrt{2}} & rac{g_{1}vc_{eta}}{\sqrt{2}} & 0 \ 0 & \mathrm{M_{2}} & rac{g_{2}vs_{eta}}{\sqrt{2}} & rac{-g_{2}vc_{eta}}{\sqrt{2}} & 0 \ rac{-g_{1}vs_{eta}}{\sqrt{2}} & rac{g_{2}vs_{eta}}{\sqrt{2}} & rac{0}{\sqrt{2}} & 0 \ rac{g_{1}vc_{eta}}{\sqrt{2}} & rac{g_{2}vs_{eta}}{\sqrt{2}} & 0 & -\mu_{\mathrm{eff}} & -\lambda vc_{eta} \ rac{g_{1}vc_{eta}}{\sqrt{2}} & rac{-g_{2}vc_{eta}}{\sqrt{2}} & 0 & -\mu_{\mathrm{eff}} & -\lambda vc_{eta} \ rac{g_{1}vc_{eta}}{\sqrt{2}} & rac{-g_{2}vc_{eta}}{\sqrt{2}} & -\mu_{\mathrm{eff}} & 0 & -\lambda vs_{eta} \ 0 & 0 & -\lambda vs_{eta} & -\lambda vc_{eta} & 2\kappa v_{s} \ \end{pmatrix}$$

) $ilde{\chi}^0_1$ becomes more singlino-like, as : $|2\kappa v_s|<<\mu_{
m eff},~{
m M}_1,~{
m M}_2$

In singlino limit :
$$M_{ ilde{\chi}_1^0} \simeq \, 2\kappa v_s = 2rac{\kappa}{\lambda} \mu_{
m eff}$$

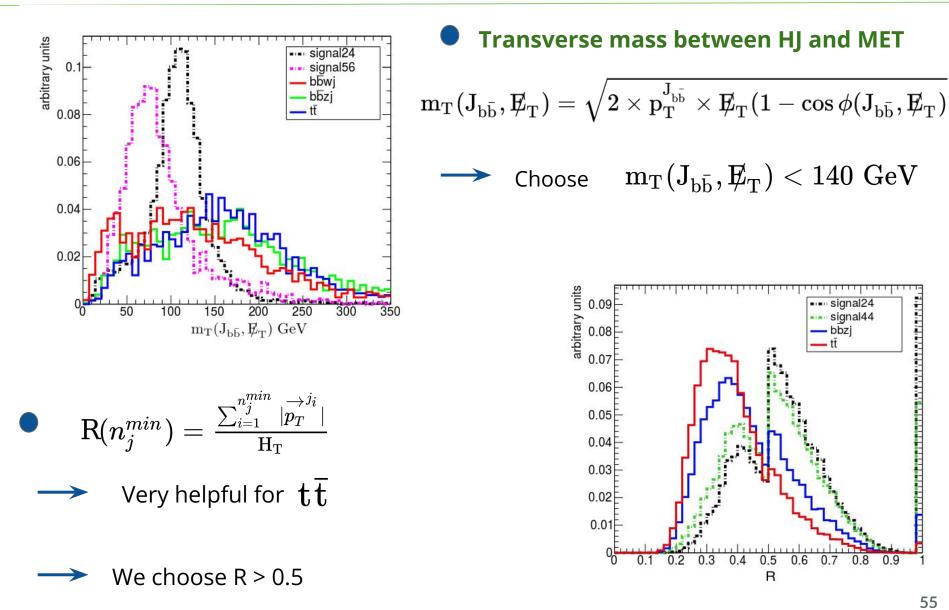
For very light singlino : $|rac{\kappa}{\lambda}|\sim 10^{-2}-10^{-1},~{
m for}~\mu_{
m eff}>100{
m GeV}$ (Due to LEP limit on chargino mass)

Branching Ratios



- $\blacksquare \quad BR(H_{SM}\to H_1H_1/A_1A_1) \mbox{ is at most 11-12\% , which is well allowed by the}$ upper limit on $H_{SM}\to BSM \mbox{ decay BR}$
- The light Higgs bosons primarily decays to $\, {f b} ar b$ and $ilde \chi^0_1 ilde \chi^0_1$
- When $\,{
 m b}ar{
 m b}$ mode is not kinematically accessible $\, au au$ mode gets enhanced

Illustrative Benchmark Points


	BP1	BP2	BP3	BP4	BP5	BP6
λ	0.34195	0.17783	0.22140	0.24670	0.24980	0.29853
κ	0.00080	0.00241	-0.00564	0.00520	-0.00690	0.00438
$ an\!eta$	8.46	5.99	4.79	5.85	4.96	4.63
A_{λ}	3114.53	793.52	1201.50	1654.39	1968.95	1528.60
A_{κ}	-46.48	-29.91	36.66	-57.21	69.65	-60.15
$\mu_{ ext{eff}}$	340.39	150.68	232.94	290.40	378.55	364.86
m_{H_2}	123	126	126	126	123	127
m_{H_1}	43	14	28	36	44	56
m_{A_1}	8	12	24	31	47	30
$\mathrm{m}_{ ilde{\chi}_1^0}$	3	5	10	14	20	13
Ωh^2	0.1115	0.1188	0.1188	0.1255	0.1180	0.1098
$\rm BR(H_2 \to H_1H_1)$	0.0001	0.06	0.01	0.11	0.08	0.07
$BR(H_2 \to A_1 A_1)$	0.10	0.004	0.06	0.001	0.02	0.01
$BR(H_1 \rightarrow b\bar{b})$	0.81	0.57	0.75	0.22	0.50	0.50
$\mathrm{BR}(\mathrm{H}_1 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$	0.07	0.31	0.18	0.75	0.45	0.44
$BR(H_1 \to \tau \tau)$	0.07	0.08	0.06	0.02	0.04	0.05
$BR(A_1 \rightarrow b\bar{b})$	_	0.35	0.32	0.55	0.18	0.73
$BR(A_1 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$	0.22	0.13	0.64	0.40	0.80	0.19
$BR(A_1 \to \tau \tau)$	0.69	0.42	0.03	0.05	0.01	0.06

Distribution of HJ mass

- Characteristics of HJ mass distribution are very different for backgrounds and signal processes
- Fat jet works better in lower masses than in the higher mass region
 - But even in high mass region it is found to be much better than choice of two separate b-jets

Transverse Mass and R distribution

signal24

signal44

0.8

0.9

bbzj tī

0.5

R

0.6

0.7

0.4

0.3

Flow of cuts (moderate mass region)

k.		BP2	BP3	bbZ + jets	bbW + jets	$t\overline{t}$
$\sigma($	pb)	12.4	12.4	152.8	139.8	597.9
$\sigma \times$	$\epsilon_{ m BR}$	0.7	0.9	152.8	139.8	597.9
lepto	n veto	0.6	0.8	108.5	97.6	298.2
n_j	≥ 1	0.5	0.7	107.4	96.3	297.7
$E_{\rm T} > 4$	$0.0 { m GeV}$	0.3	0.4	32.8	24.4	109.4
No. of	$J_{b\bar{b}} = 1$	0.05	0.06	1.8	3.0	4.9
$\mathrm{m}_{\mathrm{J}_{\mathrm{b}ar{\mathrm{b}}}} < 3$	$30.0~{\rm GeV}$	0.05	0.05	0.3	1.0	1.3
22	$\leq 140 \text{ GeV}$	0.04	0.04	0.2	0.8	0.9
R>	>0.5	0.034	0.04	0.08	0.6	0.4
$\sigma \times$ K-fa	$\operatorname{actor} \times \epsilon_{\mathrm{b}}^2$	0.018	0.022	0.04	0.47	0.24
• K-factors :		2		Additi	onal b-tagging ef	ficiency
	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\epsilon_{ m b}$ =	$\epsilon_{ m b} = egin{cases} 0.66 & { m for } { m t}ar{{ m t}} \ 0.55 & { m otherwise} \end{cases}$			
elnikov, schulze	${ m t}ar{ m t} ightarrow 1.4$			(CMS	Collaboration, JINS	T 13 no.

Melnikov, schulze arXiv:0907.3090

05, (2018) P05011)

Flow of cuts (High mass region) and Sensitivity

	BP4	BP5	BP6	$b\bar{b}Z + jets$	$b\bar{b}W + jets$	$t\overline{t}$
$\sigma(\mathrm{pb})$	12.4	12.4	12.4	152.8	139.8	597.9
$\sigma imes \epsilon_{ m BR}$	1.3	1.2	1.0	152.4	139.8	597.9
lepton veto	1.3	1.1	0.9	108.6	97.6	298.2
$n_j \ge 1$	1.2	1.0	0.9	108.0	97.3	297.8
$E_{\rm T} > 35.0 {\rm ~GeV}$	0.9	0.6	0.4	39.4	30.4	127.9
No. of $J_{b\bar{b}} = 1$	0.05	0.04	0.03	3.0	2.9	7.8
$30.0 < m_{J_{b\bar{b}}} < 60.0 \text{ GeV}$	0.03	0.03	0.01	0.6	0.8	1.8
$m_T(J_{b\bar{b}}, E_T) \leq 140 \text{ GeV}$	0.03	0.03	0.01	0.5	0.5	1.2
R>0.5	0.024	0.02	0.01	0.26	0.4	0.5
$\sigma \times \text{K-factor} \times \epsilon_{\text{b}}^2$	0.013	0.011	0.0055	0.13	0.3	0.3

Sensitivity for both moderate and high mass region

	BP2	BP3	BP4	BP5	BP6
$\frac{S}{\sqrt{B}}(\mathcal{L} = 300 \text{ fb}^{-1})$	11	14	8	7	3.5
$\frac{\overline{\sqrt{B}}(\mathcal{L} = 300 \text{ fb}^{-1})}{\frac{S}{\sqrt{B}}(\mathcal{L} = 3000 \text{ fb}^{-1})}$	35	44	25	22	11

Flow of cuts (Low mass region) and sensitivity

	BP1	$t\overline{t}$	DY + jets	W+jets	WW+jets	WZ+jets
$\sigma \times \epsilon_{\rm BR} \ (\rm pb)$	1.2	598	4242	5×10^4	116	51
$E_{\rm T} > 30~{\rm GeV}$	0.8	371.7	314.2	10771	46.8	23.7
$n_j \geq 1$	0.74	371.1	301.7	10516	45.2	23.3
N(lepton) = 2	0.005	15.2	16.5	0.2	1.1	0.4
$M_{\ell\ell} < 10~GeV$	0.0032	0.08	0.11	0.07	0.01	0.001
b-veto	0.0032	0.024	0.11	0.07	0.01	0.001
$\sigma \times$ K-factor	0.006	0.034	0.14	0.1	0.02	0.002

K-factors :

${ m DY+jets} ightarrow 1.3$	(arXiv:2001.11377)
$\mathrm{W+jets} ightarrow 1.4$	Phys. Rev. Lett. 115 no. 6, (2015) 062002
$\mathrm{WW}+\mathrm{jets} ightarrow 1.8$	Phys. Rev. Lett. 113 no. 21, (2014) 212001
$\mathrm{WZ+jets} ightarrow 2.07$	Phys. Lett. B 761 (2016) 179–183

signal sensitivity

$$rac{\mathrm{S}}{\sqrt{\mathrm{B}}} = egin{cases} 6 & (\mathcal{L} = 300 \; \mathrm{fb^{-1}}) \ 19 \; (\mathcal{L} = 3000 \; \mathrm{fb^{-1}}) \end{cases}$$

Sneutrino can not be DM in the MSSM

Sneutrino is the superpartner of the left-handed (LH) neutrino: is a SU(2)_L doublet (Y=1 \longrightarrow couples to the Z boson)

