

ATLAS searches for squarks and gluinos decaying to leptons Tova Holmes, on behalf of the ATLAS Collaboration SUSY 2017 12.11.2017

<u>SUSY-2016-05</u>

What do our SUSY signals look like?

- Affects branching ratios for different final states
 To cover all SUSY scenarios, need to look at all of them!

What do our SUSY signals look like?

- Divide into final states (number of leptons)
 - isolates types of backgrounds
 - allows for special variables and background estimates

1-Lepton Analysis

- ▷ W+jets produces 1L events with E_T^{miss}
 - m_T is a proxy for the invariant mass of ℓv from the W decay
 m_T > W mass reduces this background

1L

- 1L
- When *b*-tagging, semi-leptonic *ttbar* is dominant
 targets scenarios in which sparticles decay to third-generation quarks
- *ttbar* and *W*+jets backgrounds estimated using CRs at low m_{eff} (sum of E_T^{miss} and jet and lepton p_T)

Signal region specialization

1L

▷ Additional SRs targeting different numbers of jets (≥2, 4-5, ≥6, ≥9)
 ▷ optimized for different mass hierarchies and decay chains

This region targets scenarios with high sparticle masses.

SR bins in m_{eff}

2-Lepton Analysis

2L events come primarily from Z+jets decays

- ▷ no real E_T^{miss} → cut on this to reduce
- a template method
 from photon+jets data
 is used to approximate

2L

2L

- Away from the Z-peak, ttbar is the major contributor
 - like 1L case, background is difficult to reduce
 - exploit the flavor
 symmetric nature to
 estimate using *eµ* channel

Flavor symmetric backgrounds: ttbar, WW, $Z \rightarrow \tau \tau$

all produce a pair of flavoruncorrelated leptons $1 ee : 1 \mu\mu : 2 e\mu$

Signal region specialization

2L ▷ off-Z SRs target different mass splittings between gluino and neutralino

3-Lepton Analysis

Primary background is dibosons

- WZ and ZZ events can both produce 3 real prompt lepton (+ E_T^{miss} for WZ)
- ▷ E^{Tmiss} and n_{jets} cuts reduce this background
- Estimated using MC with validation regions close to the SRs

3L

- SM backgrounds for SS leptons are much lower than OS
 main backgrounds dibosons and fake or non-prompt leptons in *t/W/Z* events
 - ▷ cuts on n_{jets} and E_{T^{miss}} reduce these backgrounds
 - ▷ Fake leptons estimated from data using the matrix method

3L

Signal region specialization

Overall, the analysis has 19 SRs targeting 12 different processes!

SRs optimized for number of leptons, jets, *b*-jets, E_T^{miss}, m_{eff}, and more!

1L Exclusions

- ▷ excludes gluino masses up to 2.1 TeV, and squark masses up to 1.25 TeV
- \triangleright excellent coverage even in the region of small neutralino-gluino Δm

2L Exclusions

- ▷ excludes gluino masses up to 1.70 TeV, and squark masses up to 980 GeV
- still some uncovered space close to the diagonal

3L Exclusions

- excludes gluino masses up to 1.87 TeV, and squark masses up to 700 GeV (1.6 TeV in the model shown)
- large improvements over 2015 analyses

Inclusive Searches

10⁻¹

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

- Strong SUSY searches exclude gluinos past 2
 TeV and squarks nearly as massive
- Leptonic searches have helped extend these limits, covering many different possible mass hierarchies and possible decays
 - Many more new limits check out the public results for more:
 - <u>1 lepton, 2 lepton, 2 same-sign / 3 leptons</u>

Mass scale [TeV]

1-Lepton Results

2-Lepton Results

3-Lepton Results

1-Lepton SRs

SR	2J	4J high-x	4J low-x	6 J			
N_ℓ	=1	= 1	= 1	= 1			
$p_{\mathrm{T}}^{\ell} \; [\mathrm{GeV}]$	> 7(6) for $e(\mu)$ and < min(5 · N _{jet} , 35)	> 35	> 35	> 35			
$N_{ m jet}$	≥ 2	4 - 5	4 - 5	≥ 6			
$E_{\rm T}^{\rm miss}$ [GeV]	> 430	> 300	> 250	> 350			
$m_{\rm T} {\rm [GeV]}$	> 100	> 450	150 - 450	> 175			
Aplanarity	—	> 0.01	> 0.05	> 0.06			
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.25	—	_			
$N_{b-\text{jet}} (\text{excl})$	$= 0$ for <i>b</i> -veto, ≥ 1 for <i>b</i> -tag						
$m = [C \circ V]$ (eval)	$3 \text{ bins} \in [700, 1900]$	$2 \text{ bins} \in [1000, 2000]$	2 bins $\in [1300, 2000]$	$3 \text{ bins} \in [700, 2300]$			
$m_{\rm eff}$ [GeV] (excl)	+ [> 1900]	+ [> 2000]	+ [> 2000]	+ [> 2300]			
$m_{\rm eff} \; [{\rm GeV}] \; ({\rm disc})$	> 1100	> 1500	> 1650(1300) for gluino (squark)	> 2300(1233) for gluino (squark)			

SR	9J
N_ℓ	= 1
$p_{\mathrm{T}}^{\ell} \; [\mathrm{GeV}]$	≥ 35
$N_{ m jet}$	≥ 9
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$m_{\rm T} [{\rm GeV}]$	> 175
Aplanarity	> 0.07
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}]$	≥ 8
$m_{\rm eff} {\rm [GeV]} \left({ m excl} ight)$	[1000, 1500], [>1500]
$m_{\rm eff} \; [{\rm GeV}] \; ({\rm disc})$	> 1500

2-Lepton SRs (on-Z)

On-shell Z regions	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	$H_{\mathrm{T}}^{\mathrm{incl}}$ [GeV]	$n_{\mathbf{jets}}$	$m_{\ell\ell}$ [GeV]	SF/DF	$\Delta \phi(\mathbf{jet}_{12}, oldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]	$n_{b ext{-jets}}$
Signal region								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	_	_
Control region	ns							
CRZ	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	_	_
CR-FS	> 225	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	\mathbf{DF}	> 0.4	_	_
CRT	> 225	> 600	≥ 2	$>40,m_{\ell\ell} otin[81,101]$	SF	> 0.4	—	—
${ m CR}\gamma$		> 600	≥ 2	—	0ℓ , 1γ	—	—	—
Validation reg	gions							
VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	\mathbf{SF}	> 0.4	_	_
VRT	100 - 200	> 600	≥ 2	$>40,m_{\ell\ell} otin[81,101]$	SF	> 0.4	—	
VR-S	100 - 200	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	—	—
VR-FS	100 - 200	> 600	≥ 2	$61 < m_{\ell\ell} < 121$	\mathbf{DF}	> 0.4	—	—
VR-WZ	100 - 200	—	_	—	3ℓ	—	< 100	0
VR-ZZ	< 100	_	_	—	4ℓ	—	—	0
VR-3L	60 - 100	> 200	≥ 2	$81 < m_{\ell\ell} < 101$	3ℓ	> 0.4	_	_

2-Lepton SRs (off-Z)

Edge regions	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	H_{T} [GeV]	$n_{\mathbf{jets}}$	$m_{\ell\ell}$ [GeV]	\mathbf{SF}/\mathbf{DF}	OS/SS	$\Delta \phi(\mathbf{jet}_{12}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	$m_{\ell\ell}$ ranges
Signal regions								
SR-low	> 200	_	≥ 2	> 12	SF	OS	> 0.4	9
SR-medium	> 200	> 400	≥ 2	> 12	SF	OS	> 0.4	8
$\operatorname{SR-high}$	> 200	> 700	≥ 2	> 12	SF	OS	> 0.4	7
Control regions								
CRZ-low	< 60	_	≥ 2	> 12	SF	OS	> 0.4	_
CRZ-medium	< 60	> 400	≥ 2	> 12	SF	OS	> 0.4	_
CRZ-high	< 60	> 700	≥ 2	> 12	SF	OS	> 0.4	—
CR-FS-low	> 200	—	≥ 2	> 12	\mathbf{DF}	OS	> 0.4	—
CR-FS-medium	> 200	> 400	≥ 2	> 12	\mathbf{DF}	OS	> 0.4	—
$\operatorname{CR-FS-high}$	> 200	> 700	≥ 2	> 12	\mathbf{DF}	OS	> 0.4	—
${ m CR}\gamma ext{-low}$	—	—	≥ 2	—	0ℓ , 1γ	—	—	—
${ m CR}\gamma ext{-medium}$	—	> 400	≥ 2	_	0ℓ , 1γ	—	—	—
${ m CR}\gamma ext{-high}$	—	> 700	≥ 2	—	0ℓ , 1γ	—	—	—
CR-real	_	> 200	≥ 2	81 - 101	$2\ell~{ m SF}$	OS	_	_
CR-fake	< 125	_	—	$\in [12,\infty), \\ \notin [81,101] \textbf{(SF)}$	$2\ell \ \mathbf{SF}/\mathbf{DF}$	\mathbf{SS}	—	—
Validation region	S							
VR-low	100 - 200	_	≥ 2	> 12	SF	OS	> 0.4	_
VR-medium	100 - 200	> 400	≥ 2	> 12	\mathbf{SF}	OS	> 0.4	—
VR-high	100 - 200	> 700	≥ 2	> 12	SF	OS	> 0.4	_
VR-fake	> 50	_	≥ 2	$\in [12,\infty), \notin [81,101]$ (SF)	\mathbf{SF}/\mathbf{DF}	SS	_	_

3-Lepton SRs

Signal region	$N_{\rm leptons}^{\rm signal}$	N _{b-jets}	N _{jets}	$p_{\mathrm{T}}^{\mathrm{jet}}$	$E_{ m T}^{ m miss}$	m _{eff}	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	Other	Targeted
	-			[GeV]	[GeV]	[GeV]			Signal
Rpc2L2bS	$\geq 2SS$	≥ 2	≥ 6	> 25	> 200	> 600	> 0.25	_	Fig. 1(a)
Rpc2L2bH	$\geq 2SS$	≥ 2	≥6	> 25	—	> 1800	> 0.15	—	Fig. 1(a), NUHM2
Rpc2Lsoft1b	$\geq 2SS$	≥ 1	≥6	> 25	> 100	_	> 0.3	$20,10 < p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2} < 100 {\rm GeV}$	Fig. 1(b)
Rpc2Lsoft2b	$\geq 2SS$	≥ 2	≥6	> 25	> 200	> 600	> 0.25	$20,10 < p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2} < 100 {\rm GeV}$	Fig. 1(b)
Rpc2L0bS	$\geq 2SS$	= 0	≥6	> 25	> 150	_	> 0.25	—	Fig. 1(c)
Rpc2L0bH	$\geq 2SS$	= 0	≥6	> 40	> 250	> 900	_	_	Fig. 1(c)
Rpc3L0bS	≥ 3	= 0	≥ 4	> 40	> 200	> 600	_	—	Fig. 1(d)
Rpc3L0bH	≥ 3	= 0	≥ 4	> 40	> 200	> 1600	—	-	Fig. 1(d)
Rpc3L1bS	≥ 3	≥ 1	≥ 4	> 40	> 200	> 600	—	-	Other
Rpc3L1bH	≥ 3	≥ 1	≥ 4	> 40	> 200	> 1600	—	_	Other
Rpc2L1bS	$\geq 2SS$	≥ 1	≥6	> 25	> 150	> 600	> 0.25	—	Fig. 1(e)
Rpc2L1bH	$\geq 2SS$	≥ 1	≥6	> 25	> 250	—	> 0.2	_	Fig. 1(e)
Rpc3LSS1b	$\geq \ell^\pm \ell^\pm \ell^\pm$	≥ 1	_	—	_	_	_	veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$	Fig. 1(f)
Rpv2L1bH	$\geq 2SS$	≥ 1	≥6	> 50	_	> 2200	_	—	Figs. 1(g), 1(h)
Rpv2L0b	= 2SS	= 0	≥6	> 40	-	> 1800	—	veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$	Fig. 1(i)
Rpv2L2bH	$\geq 2SS$	≥ 2	≥6	> 40	_	> 2000	—	veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$	Fig. 1(j)
Rpv2L2bS	$\geq \ell^-\ell^-$	≥ 2	≥ 3	> 50	-	> 1200	—	_	Fig. 1(k)
Rpv2L1bS	$\geq \ell^-\ell^-$	≥ 1	≥ 4	> 50	_	> 1200	—	-	Fig. 1(1)
Rpv2L1bM	$\geq \ell^-\ell^-$	≥ 1	≥ 4	> 50	—	> 1800	—	_	Fig. 1(1)