

# Searches for direct pair production of stops and sbottoms with the ATLAS detector

#### Sara Strandberg, Stockholm University on behalf of the ATLAS Collaboration



• Light stop ( $\mathcal{O}(1)$  TeV) required for SUSY to solve Higgs fine-tuning problem. Also, large top Yukawa can give large stop mixing.

| Short name       | Webpage      | Paper              |
|------------------|--------------|--------------------|
| stop0L           | SUSY-2016-15 | arXiv:1709.04183   |
| stop1L           | SUSY-2016-16 | arXiv:1711.11520   |
| stop2L           | SUSY-2016-17 | arXiv:1708.03247   |
| stop3L/sbottom2L | SUSY-2016-14 | JHEP 09 (2017) 084 |
| sbottom0L/1L     | SUSY-2016-28 | arXiv:1708.09266   |



- This talk covers results from conventional simplified models:
  - only  $\tilde{t}_1$  (or  $\tilde{b}_1$ ) and  $\tilde{\chi}_1^0$  within LHC reach,

(also cover decays to  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_2^0$  for stop3L/sbottom2L, sbottom1L);

- $\tilde{t}_1$  mainly composed of  $\tilde{t}_R$ ;
- $\tilde{\chi}_1^0$  mainly composed of  $\tilde{B}^0$ .
- Results based on pMSSM-inspired simplified models will be covered in the following talk, by Ian Snyder.



• The decay of  $\tilde{t}_1$  depends on the SUSY mass spectrum.



• If only  $\tilde{\chi}_1^0$  is lighter than  $\tilde{t}_1$ :  $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$  $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$  $\tilde{t}_1 \rightarrow b f f' \tilde{\chi}_1^0$  $(\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0)$ 

- If also  $\tilde{\chi}_1^{\pm}$  or  $\tilde{\chi}_2^0$  is lighter than  $\tilde{t}_1$ :  $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 
  - $\tilde{t}_1 \to t \tilde{\chi}_2^0$



stop0L

- Lepton veto.
- At least four jets (two *b*-tagged)
- Reject QCD with  $\min\{\Delta\phi(\text{jet}_{1-3}, E_{\text{T}}^{\text{miss}})\} > 0.4$ .
- Reject  $t\bar{t}$  with cut on  $\min\{m_{\mathrm{T}}(\mathrm{jet}_{1-4}, E_{\mathrm{T}}^{\mathrm{miss}})\}$ .



- Top reconstruction using large-radius jets in boosted topology.
- Jigsaw analysis with ISR selection in diagonal region ( $m_{\tilde{t}_1} m_{\tilde{\chi}_1^0} \approx m_{top}$ ).





 The dominant backgrounds are normalized in dedicated control regions (CRs), and validated in intermediate validation regions (VRs) before extrapolated to the signal regions (SRs).



- The VRs show good background modeling.
- The data in all SRs are compatible with the SM expectations.



Large  $m_{ ilde{t}_1} - m_{ ilde{\chi}^0_1}$  (2-body)

- Exactly one isolated lepton.
- At least four jets (one *b*-tagged).
- Use  $m_{\rm T}$  to suppress  $1\ell \ t \bar{t}$  background.
- Asymmetric stransverse mass ( $am_{\mathrm{T2}}$ ) to suppress  $2\ell \ t\bar{t}$ .
- Use BDT to get sensitivity in diagonal region ( $m_{\tilde{t}_1} \approx m_{top} + m_{\tilde{\chi}_1^0}$ ).





 $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = U_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$   $W_{T} = (190, 17) \text{ GeV } 0 \times 4$ 

Data

HTOTAL SM



Medium 
$$m_{ ilde{t}_1} - m_{ ilde{\chi}^0_1}$$
 (3-body)

• Shape-fit in  $am_{T2}$ .

Small  $m_{ ilde{t}_1} - m_{ ilde{\chi}_1^0}$  (4-body)

• Soft-lepton selection with shape-fit in  $p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}}$ .









• Good agreement with SM expectations in both VRs and SRs.



- Exactly two isolated leptons, opposite charge.
- Invariant mass  $m_{\ell\ell}$  not in Z window (SF).
- Use kinematic end-point of lepton-based stransverse mass (2-body).
- Jigsaw variables (3-body).
- Ratios of  $p_{\rm T}$ 's and  $E_{\rm T}^{\rm miss}$  (4-body).



p

stop2L

Large  $m_{\tilde{\chi}^0_1} - m_{\tilde{\chi}^0_1}$ 

(2-body)

Medium





 $VR_{it}^{2body} VR_{VV,OE}^{2body} SRA_{ibo}^{2body} SRA_{ibo}^{2body} SRB_{ibo}^{2body} SRB_{ibo}^{2body} SRB_{ibo}^{2body} SRB_{ibo}^{2body} SR_{it}^{2body} SRC_{it}^{2body} SRC_{it}^{2body} VR_{it}^{3body} VR_{it}^{3body} SR_{ibody}^{3body} SR_{ibody}^{3body} SR_{ibody}^{3body} SR_{ibody}^{3body} SR_{it}^{3body} SR_{it}^{3body} SR_{it}^{2body} SR_{it}^{2body}$ 

• Good agreement with SM expectations in both VRs and SRs.





- Exclude stops below 1 TeV for a massless neutralino.
- Much improved sensitivity to the diagonal, 3-body and 4-body regions.



stop3L

 $W^{\mp}$  $W^*$ 

 $W^{\mp}$ 

- Three leptons with same charge.
- Invariant mass  $m_{ee}$  not in Z window.



- Good agreement with SM expectations in both VRs and SRs.
- Exclude stops below 700 GeV.



p









- Good agreement with SM expectations in both VRs and SRs.
- Exclude sbottoms below 700 GeV.





- Either 0 or 1 lepton.
- At least two *b*-tagged jets.
- Reject QCD with  $\min_{i=0...4} \{\Delta \phi(\text{jet}_i, E_T^{\text{miss}})\}.$
- Large cotransverse mass (OL)  $m_{CT}^2(b_1, b_2) = [E_T(b_1) + E_T(b_2)]^2 - [\mathbf{p}_T(b_1) - \mathbf{p}_T(b_2)].$
- Large  $m_{\mathrm{T}}$  and  $am_{\mathrm{T2}}$  (1L).









### sbottom0L and sbottom1L





- Many results from ATLAS in searches for direct production of stops and sbottoms based on the full 2015+2016 dataset ( $36 \, \text{fb}^{-1}$ ).
- No significant excess above the Standard Model expectation found.  $\rightarrow$  limits are set on the stop and sbottom masses.
- Limits are significantly improved with respect to previous results.
- The search for SUSY continues. Stay tuned for results on the full Run 2 dataset.

|                        | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$                                  | 0                       | 2 b            | Yes | 36.1      | $\tilde{b}_1$ |             | 950 GeV       |
|------------------------|--------------------------------------------------------------------------------------------------------|-------------------------|----------------|-----|-----------|---------------|-------------|---------------|
| 'ks<br>ion             | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$                              | 2 e, µ (SS)             | 1 <i>b</i>     | Yes | 36.1      | $\tilde{b}_1$ |             | 275-700 GeV   |
| uai                    | $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm}$                                | <b>0-2</b> <i>e</i> ,μ  | 1-2 <i>b</i>   | Yes | 4.7/13.3  | $\tilde{t}_1$ | 117-170 GeV | 200-720 GeV   |
| bs                     | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ | 0-2 <i>e</i> , µ        | 0-2 jets/1-2 b | Yes | 20.3/36.1 | $\tilde{t}_1$ | 90-198 GeV  | 0.195-1.0 TeV |
| en.                    | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$                                  | 0                       | mono-jet       | Yes | 36.1      | $\tilde{t}_1$ |             | 90-430 GeV    |
| ge                     | $\tilde{t}_1 \tilde{t}_1$ (natural GMSB)                                                               | 2 e, µ (Z)              | 1 <i>b</i>     | Yes | 20.3      | $\tilde{t}_1$ |             | 150-600 GeV   |
| 3 <sup>rd</sup><br>dir | $\tilde{t}_2 \tilde{t}_2,  \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$                                    | 3 e, µ (Z)              | 1 <i>b</i>     | Yes | 36.1      | $\tilde{t}_2$ |             | 290-790 GeV   |
|                        | $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$                                      | 1-2 <i>e</i> , <i>µ</i> | 4 <i>b</i>     | Yes | 36.1      | $\tilde{t}_2$ |             | 320-880 GeV   |



## Backup







Large 
$$m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$$
 (SRA  $m_{\tilde{t}_1} = 1000 \text{ GeV}, m_{\tilde{\chi}_1^0} = 1 \text{ GeV};$   
SRB  $m_{\tilde{t}_1} = 600 \text{ GeV}, m_{\tilde{\chi}_1^0} = 300 \text{ GeV}$ )

| Signal Region |                                                                                                   | TT               | $\mathbf{TW}$     | T0                |  |  |
|---------------|---------------------------------------------------------------------------------------------------|------------------|-------------------|-------------------|--|--|
|               | $m_{\text{jet},R=1.2}^0$                                                                          |                  | > 120  GeV        |                   |  |  |
|               | $m^{1}_{\text{jet},R=1.2}$                                                                        | > 120  GeV       | [60, 120]  GeV    | $< 60 { m GeV}$   |  |  |
|               | $m_{ m T}^{b,{ m min}}$                                                                           |                  | $> 200 { m ~GeV}$ |                   |  |  |
|               | $N_{b- m jet}$                                                                                    |                  | $\geq 2$          |                   |  |  |
|               | au-veto                                                                                           |                  | yes               |                   |  |  |
|               | $\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} ight)\right $ |                  | > 0.4             |                   |  |  |
|               | $m_{\text{jet},R=0.8}^0$                                                                          | > 60  GeV        |                   |                   |  |  |
| Α             | $\Delta R\left(b,b ight)$                                                                         | > 1              | -                 |                   |  |  |
|               | $m_{\mathrm{T2}}^{\chi^2}$                                                                        | $> 400 { m GeV}$ | $> 400 { m GeV}$  | $> 500 { m GeV}$  |  |  |
|               | $E_{\mathrm{T}}^{\mathrm{miss}}$                                                                  | > 400  GeV       | $> 500 { m GeV}$  | $> 550 { m ~GeV}$ |  |  |
| D             | $m_{\mathrm{T}}^{b,\mathrm{max}}$                                                                 |                  | > 200  GeV        |                   |  |  |
| D             | $\Delta R\left( b,b\right)$                                                                       |                  | > 1.2             |                   |  |  |



 $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \approx m_t$ 

| Variable                                                             | SRC1      | SRC2             | SRC3        | SRC4                   | SRC5      |  |  |  |  |
|----------------------------------------------------------------------|-----------|------------------|-------------|------------------------|-----------|--|--|--|--|
| $N_{b-\mathrm{jet}}$                                                 |           | $\geq 1$         |             |                        |           |  |  |  |  |
| $N_{b- m jet}^{ m S}$                                                |           | $\geq 1$         |             |                        |           |  |  |  |  |
| $N_{ m jet}^{ m S}$                                                  |           | $\geq 5$         |             |                        |           |  |  |  |  |
| $p_{\mathrm{T},b}^{0,\mathrm{S}}$                                    | > 40  GeV |                  |             |                        |           |  |  |  |  |
| $m_{ m S}$                                                           |           | > 300  GeV       |             |                        |           |  |  |  |  |
| $\Delta \phi(\mathrm{ISR}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$ |           | > 3.0            |             |                        |           |  |  |  |  |
| $p_{\mathrm{T}}^{\mathrm{ISR}}$                                      |           | > 400  GeV       |             |                        |           |  |  |  |  |
| $p_{ m T}^{4,{ m S}}$                                                |           | $> 50 { m ~GeV}$ |             |                        |           |  |  |  |  |
| $R_{\rm ISR}$                                                        | 0.30-0.40 | 0.40 - 0.50      | 0.50 - 0.60 | $0.\overline{60}-0.70$ | 0.70–0.80 |  |  |  |  |











| Selection                         | $\mathbf{high}	extsf{-}E_{\mathbf{T}}^{\mathbf{miss}}$ | $\mathbf{low}	extsf{-}E_{\mathbf{T}}^{\mathbf{miss}}$ | soft-lepton                          |  |  |  |
|-----------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------|--|--|--|
| Trigger                           | $E_{\rm T}^{\rm miss}$ triggers only                   | $E_{\rm T}^{\rm miss}$ and lepton triggers            | $E_{\rm T}^{\rm miss}$ triggers only |  |  |  |
| Data quality                      |                                                        | jet cleaning, primary vertex                          |                                      |  |  |  |
| Second-lepton veto                | no additional baseline leptons                         |                                                       |                                      |  |  |  |
| Number of leptons, tightness      | = 1 'loose' lepton                                     | = 1 'tight' lepton                                    | = 1 'tight' lepton                   |  |  |  |
| Lepton $p_{\rm T}$ [GeV]          | > 25                                                   | > 27                                                  | $> 4$ for $\mu$                      |  |  |  |
|                                   |                                                        |                                                       | > 5 for $e$                          |  |  |  |
| Number of $(jets, b-tags)$        | $(\geq 2, \geq 0)$                                     | $(\geq 4, \geq 1)$                                    | $(\geq 2, \geq 1)$                   |  |  |  |
| Jet $p_{\rm T}$ [GeV]             | > (25, 25)                                             | > (50, 25, 25, 25)                                    | > (25, 25)                           |  |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]      | > 230                                                  | > 100                                                 | > 230                                |  |  |  |
| $m_{\mathrm{T}}   \mathrm{[GeV]}$ | > 30                                                   | > 90                                                  | _                                    |  |  |  |



| Signal region                                                  | tN_med                                    | tN_high            |  |  |  |
|----------------------------------------------------------------|-------------------------------------------|--------------------|--|--|--|
| Preselection                                                   | high- $E_{\rm T}^{\rm miss}$ preselection |                    |  |  |  |
| Number of (jets, <i>b</i> -tags)                               | $(\geq 4, \geq 1)$                        | $(\geq 4, \geq 1)$ |  |  |  |
| Jet $p_{\rm T}$ [GeV]                                          | > (60, 50, 40, 40)                        | >(100, 80, 50, 30) |  |  |  |
| $E_{\rm T}^{\rm miss}~[{ m GeV}]$                              | > 250                                     | > 550              |  |  |  |
| $E_{\mathrm{T},\perp}^{\mathrm{miss}}$ [GeV]                   | > 230                                     | —                  |  |  |  |
| $H_{\mathrm{T,sig}}^{\mathrm{miss}}$                           | > 14                                      | > 27               |  |  |  |
| $m_{\mathrm{T}}$ [GeV]                                         | > 160                                     |                    |  |  |  |
| $am_{\mathrm{T2}}$ [GeV]                                       | > 175                                     |                    |  |  |  |
| $m_{\rm top}^{\rm reclustered}$ [GeV]                          | > 150                                     | > 130              |  |  |  |
| $\Delta R(b,\ell)$                                             | < 2.0                                     |                    |  |  |  |
| $ \Delta \phi(j_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $ | > 0.4                                     |                    |  |  |  |
| $m_{\mathrm{T2}}^{\tau}$ based $\tau$ -veto [GeV]              | > 80                                      |                    |  |  |  |
| Exclusion technique                                            | shape-fit in $E_{\rm T}^{\rm miss}$       | cut-and-count      |  |  |  |
| Bin boundaries                                                 | $[250, 350, 450, 600, \inf]$              |                    |  |  |  |



| Variable                                               | tN_diag_low                           | tN_diag_med                                 | tN_diag_high                          |
|--------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|
| Preselection                                           | low- $E_{\mathrm{T}}^{\mathrm{miss}}$ | low- $E_{\mathrm{T}}^{\mathrm{miss}}$       | $	ext{high-}E_{	ext{T}}^{	ext{miss}}$ |
| Number of (jets, <i>b</i> -tags)                       | $(\geq 4, \geq 1)$                    | $(\geq 4, \geq 1)$                          | $(\geq 5, \geq 1)$                    |
| Jet $p_{\rm T}$ [GeV]                                  | $>(120, \ 25, \ 25, \ 25)$            | >(100, 50, 25, 25)                          | > (25, 25, 25, 25, 25)                |
| $E_{\rm T}^{\rm miss}~[{\rm GeV}]$                     | > 100                                 | > 120                                       | > 230                                 |
| $m_{\rm T}~[{ m GeV}]$                                 | > 90                                  | > 120                                       | > 120                                 |
| $R_{ m ISR}$                                           | _                                     | _                                           | $ \downarrow 0.4 $                    |
| $p_{\rm T}(t\bar{t})  [{\rm GeV}]$                     | > 400                                 | _                                           | _                                     |
| $ \Delta \phi(\ell, t ar t) $                          | > 1.0                                 | _                                           | _                                     |
| $ \Delta \phi(j_{1,2}, ec{p}_{	ext{T}}^{	ext{miss}}) $ | > 0.4                                 | > 0.4                                       | _                                     |
| $m_{\mathrm{T2}}^{\tau}$ based $\tau$ -veto [GeV]      | _                                     | > 80                                        | _                                     |
| BDT score                                              | $BDT_{low} > 0.55$                    | $BDT\_med > 0.75$                           | $BDT_high > 0.8$                      |
| Exclusion technique                                    | cut-and-count                         | shape-fit in BDT score                      | shape-fit in BDT score                |
| Bin boundaries                                         | _                                     | $\left[0.4, 0.5, 0.6, 0.7, 0.8, 1.0\right]$ | $\left[0.6, 0.7, 0.8, 1.0\right]$     |



| Signal region                                                             | bWN                                                | bffN                                                 |
|---------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| Preselection                                                              | $\mathrm{high}	extsf{-}E_\mathrm{T}^\mathrm{miss}$ | soft-lepton                                          |
| Number of (jets, <i>b</i> -tags)                                          | $(\geq 4, \geq 1)$                                 | $(\geq 2, \geq 1)$                                   |
| Jet $p_{\rm T}$ [GeV]                                                     | $>(50,\ 25,\ 25,\ 25)$                             | > (400, 25)                                          |
| $b$ -tagged jet $p_{\rm T}$ [GeV]                                         | > 25                                               | > 25                                                 |
| $E_{\rm T}^{\rm miss}$ [GeV]                                              | > 300                                              | > 300                                                |
| $m_{\rm T}~[{ m GeV}]$                                                    | > 130                                              | < 160                                                |
| $am_{\mathrm{T2}}$ [GeV]                                                  | < 110                                              | _                                                    |
| $m_{\rm top}^{\rm reclustered}$ [GeV]                                     | —                                                  | top veto                                             |
| $p_{\mathrm{T}}^{\ell}/E_{\mathrm{T}}^{\mathrm{miss}}$                    | —                                                  | < 0.02                                               |
| $\Delta \phi(\ell, ec{p}_{	ext{T}}^{	ext{miss}})$                         | < 2.5                                              | _                                                    |
| $\min(\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, b\text{-jet}_i))$ | —                                                  | < 1.5                                                |
| $ \Delta \phi(j_{1,2}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) $            | > 0.4                                              |                                                      |
| $m_{\mathrm{T2}}^{\tau}$ based $\tau$ -veto [GeV]                         | > 80                                               | _                                                    |
| Exclusion technique                                                       | shape-fit in $am_{T2}$                             | shape-fit in $p_{\rm T}^{\ell}/E_{\rm T}^{\rm miss}$ |
| Bin boundaries                                                            | $\left[0, 91, 97, 106, 118, 130 ight]$             | [0, 0.01, 0.015, 0.02]                               |







|                                                        | SRA <sub>1</sub> <sup>2</sup> | -body<br>80 | SRB <sup>2</sup>               | -body<br>40 | $\mathrm{SRC}_{110}^{2\text{-body}}$ |      |
|--------------------------------------------------------|-------------------------------|-------------|--------------------------------|-------------|--------------------------------------|------|
| Lepton flavour                                         | SF                            | DF          | SF                             | DF          | SF                                   | DF   |
| $p_{\mathrm{T}}(\ell_1), p_{\mathrm{T}}(\ell_2)$ [GeV] | > 25,                         | > 20        | > 25,                          | > 20        | > 25,                                | > 20 |
| <i>m<sub>ℓℓ</sub></i> [GeV]                            | > 111.2                       | > 20        | [20,<br>71.2]<br>or<br>> 111.2 | > 20        | [20,<br>71.2]<br>or<br>> 111.2       | > 20 |
| $R_{2\ell 2j}$                                         | > 0.3                         | —           | -                              |             |                                      |      |
| $R_{2\ell}$                                            | <u>100000</u>                 |             |                                | 1)          | > 1                                  | .2   |
| $\Delta x$                                             | < 0.                          | 07          | —                              |             | _                                    |      |
| $\Delta \phi_{ m boost}$                               | -                             |             | < 1.5                          |             | -                                    |      |
| n <sub>jets</sub>                                      | -                             |             | ≥ 2                            |             | ≥ 3                                  |      |
| n <sub>b-jets</sub>                                    | = 0                           |             | ≥ 1                            |             | ≥ 1                                  |      |
| $E_{\rm T}^{\rm miss}$ [GeV]                           | -                             |             | -                              |             | > 200                                |      |
| $m_{T2}^{\ell\ell}$ [GeV]                              | > 1                           | 80          | > 1                            | 40          | > 1                                  | 10   |

Table 2: Two-body selection signal region definitions.



|                                                                                  | SR <sub>W</sub> <sup>3-b</sup>       | ody                | $SR_t^{3-t}$                           | oody               |  |
|----------------------------------------------------------------------------------|--------------------------------------|--------------------|----------------------------------------|--------------------|--|
| Lepton flavour $p_{\rm m}(l_{\rm s}) p_{\rm m}(l_{\rm s})$ [GeV]                 | SF                                   | DF                 | SF                                     | DF                 |  |
| $p_{\mathrm{T}}(\iota_1), p_{\mathrm{T}}(\iota_2)$ [GeV]<br>$m_{\ell\ell}$ [GeV] | 23, 2<br>[20, 71.2]<br>or<br>> 111.2 | > 20               | > 23, .<br>[20, 71.2]<br>or<br>> 111.2 | > 20               |  |
| n <sub>b-jets</sub>                                                              | = 0                                  | )                  | 2                                      | 1                  |  |
| $M^{\rm R}_{\Delta}$ [GeV]                                                       | > 9.                                 | 5                  | > 110                                  |                    |  |
| $R_{p_{\mathrm{T}}}$                                                             | > 0.                                 | 7                  | > 0.7                                  |                    |  |
| $1/\gamma_{R+1}$                                                                 | > 0.                                 | 7                  | > 0.7                                  |                    |  |
| $\Delta \phi^{\mathrm{R}}_{\beta}$                                               | $> 0.9  \cos \theta$                 | $ \theta_b  + 1.6$ | $> 0.9  \cos(100) $                    | $ \theta_b  + 1.6$ |  |

Table 3: Three-body selection signal region definitions.



|                                       | SR <sup>4-body</sup>    |
|---------------------------------------|-------------------------|
| Lepton flavour                        | SF and DF               |
| $E_{\rm T}^{\rm miss}$ [GeV]          | > 200                   |
| $p_{\mathrm{T}}(\ell_1)$ [GeV]        | [7, 80]                 |
| $p_{\rm T}(\ell_2)$ [GeV]             | [7, 35]                 |
| $m_{\ell\ell}$ [GeV]                  | > 10                    |
| n <sub>jets</sub>                     | ≥ 2                     |
| $p_{\mathrm{T}}(j_1)$ [GeV]           | > 150                   |
| $p_{\rm T}(j_2)$ [GeV]                | > 25                    |
| $p_{\rm T}(j_3)/E_{\rm T}^{\rm miss}$ | < 0.14                  |
| $R_{2\ell 4j}$                        | > 0.35                  |
| $R_{2\ell}$                           | > 12                    |
| nb-jets                               | veto on $j_1$ and $j_2$ |

#### Table 4: Four-body selection signal region definition.







| Signal region | $N_{\rm leptons}^{\rm signal}$          | N <sub>b-jets</sub> | N <sub>jets</sub> | $p_{\mathrm{T}}^{\mathrm{jet}}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | m <sub>eff</sub> | $E_{\rm T}^{\rm miss}/m_{\rm eff}$ | Other                                                            | Targeted         | ]   |
|---------------|-----------------------------------------|---------------------|-------------------|---------------------------------|----------------------------------|------------------|------------------------------------|------------------------------------------------------------------|------------------|-----|
|               |                                         |                     |                   | [GeV]                           | [GeV]                            | [GeV]            |                                    |                                                                  | Signal           |     |
| Rpc2L2bS      | $\geq 2SS$                              | $\geq 2$            | ≥ 6               | > 25                            | > 200                            | > 600            | > 0.25                             | _                                                                | Fig. 1(a)        | ]   |
| Rpc2L2bH      | $\geq 2SS$                              | ≥ 2                 | ≥ 6               | > 25                            | _                                | > 1800           | > 0.15                             | _                                                                | Fig. 1(a), NUHM2 |     |
| Rpc2Lsoft1b   | $\geq 2SS$                              | ≥ 1                 | ≥ 6               | > 25                            | > 100                            | -                | > 0.3                              | $20,10 < p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2} < 100 {\rm GeV}$ | Fig. 1(b)        | ]   |
| Rpc2Lsoft2b   | $\geq 2SS$                              | $\geq 2$            | ≥ 6               | > 25                            | > 200                            | > 600            | > 0.25                             | $20,10 < p_{\rm T}^{\ell_1}, p_{\rm T}^{\ell_2} < 100 {\rm GeV}$ | Fig. 1(b)        |     |
| Rpc2L0bS      | $\geq 2SS$                              | = 0                 | ≥ 6               | > 25                            | > 150                            | -                | > 0.25                             | -                                                                | Fig. 1(c)        |     |
| Rpc2L0bH      | $\geq 2SS$                              | = 0                 | ≥ 6               | > 40                            | > 250                            | > 900            | _                                  | -                                                                | Fig. 1(c)        |     |
| Rpc3L0bS      | ≥ 3                                     | = 0                 | ≥ 4               | > 40                            | > 200                            | > 600            | _                                  | -                                                                | Fig. 1(d)        |     |
| Rpc3L0bH      | ≥ 3                                     | = 0                 | ≥ 4               | > 40                            | > 200                            | > 1600           | _                                  | -                                                                | Fig. 1(d)        |     |
| Rpc3L1bS      | ≥ 3                                     | ≥ 1                 | ≥ 4               | > 40                            | > 200                            | > 600            | _                                  | -                                                                | Other            |     |
| Rpc3L1bH      | ≥ 3                                     | ≥ 1                 | ≥ 4               | > 40                            | > 200                            | > 1600           | _                                  | -                                                                | Other            |     |
| Rpc2L1bS      | $\geq 2SS$                              | ≥ 1                 | ≥ 6               | > 25                            | > 150                            | > 600            | > 0.25                             | -                                                                | Fig. 1(e)        | Hom |
| Rpc2L1bH      | $\geq 2SS$                              | ≥ 1                 | ≥ 6               | > 25                            | > 250                            | _                | > 0.2                              | _                                                                | Fig. 1(e) 500    |     |
| Rpc3LSS1b     | $\geq \ell^{\pm} \ell^{\pm} \ell^{\pm}$ | ≥ 1                 | -                 | -                               | —                                | -                | _                                  | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                 | Fig. 1(f) STOK   | >   |
| Rpv2L1bH      | $\geq 2SS$                              | ≥ 1                 | ≥ 6               | > 50                            | _                                | > 2200           | _                                  | -                                                                | Figs. 1(g), 1(h) |     |
| Rpv2L0b       | = 2SS                                   | = 0                 | ≥ 6               | > 40                            | _                                | > 1800           | _                                  | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                 | Fig. 1(i)        |     |
| Rpv2L2bH      | $\geq 2SS$                              | $\geq 2$            | ≥ 6               | > 40                            | _                                | > 2000           | _                                  | veto $81 < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV}$                 | Fig. 1(j)        |     |
| Rpv2L2bS      | $\geq \ell^- \ell^-$                    | $\geq 2$            | ≥ 3               | > 50                            | _                                | > 1200           | _                                  | -                                                                | Fig. 1(k)        |     |
| Rpv2L1bS      | $\geq \ell^- \ell^-$                    | ≥ 1                 | ≥ 4               | > 50                            | -                                | > 1200           | _                                  | -                                                                | Fig. 1(1)        |     |
| Rpv2L1bM      | $\geq \ell^- \ell^-$                    | ≥ 1                 | ≥ 4               | > 50                            | -                                | > 1800           | _                                  | -                                                                | Fig. 1(1)        |     |

- Fake-non-prompt and charge-flip backgrounds estimated with data.
- $t\bar{t}V$  backgrouds estimated with MC but checked in VRs.

(shar Klein







|                                                                      | b0L-SRAx                                                   | b0L-SRB | b0L-SRC                                           |  |
|----------------------------------------------------------------------|------------------------------------------------------------|---------|---------------------------------------------------|--|
| Lepton veto                                                          | No $e/\mu$ with $p_{\rm T} > 10$ GeV after overlap removal |         |                                                   |  |
| $N_{\rm jets} \ (p_{\rm T} > 35 {\rm ~GeV})$                         | 2–4                                                        | 2-4     | -                                                 |  |
| $N_{\rm jets} (p_{\rm T} > 20 { m ~GeV})$                            | -                                                          | -       | 2 - 5                                             |  |
| $p_{\mathrm{T}}(j_1)$ [GeV]                                          | > 130                                                      | > 50    | > 500                                             |  |
| $p_{\rm T}(j_2)$ [GeV]                                               | > 50                                                       | > 50    | > 20                                              |  |
| $p_{\rm T}(j_4)$ [GeV]                                               | < 50                                                       | -       | -                                                 |  |
| $H_{\rm T4}$ [GeV]                                                   | -                                                          | -       | < 70                                              |  |
| <i>b</i> -jets                                                       | $j_1$ and $j_2$                                            | any 2   | $j_2$ and $(j_3 \text{ or } j_4 \text{ or } j_5)$ |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                         | > 250                                                      | > 250   | > 500                                             |  |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}$                                   | > 0.25                                                     | -       | -                                                 |  |
| $\min[\Delta\phi(\text{jet}_{1-4}, E_{\mathrm{T}}^{\mathrm{miss}})]$ | > 0.4                                                      | > 0.4   | -                                                 |  |
| $\min[\Delta\phi(\text{jet}_{1-2}, E_{\mathrm{T}}^{\mathrm{miss}})]$ | -                                                          | -       | > 0.2                                             |  |
| $\Delta \phi(b_1, E_{\mathrm{T}}^{\mathrm{miss}})$                   | -                                                          | < 2.0   | -                                                 |  |
| $\Delta \phi(b_2, E_{\mathrm{T}}^{\mathrm{miss}})$                   | -                                                          | < 2.5   | -                                                 |  |
| $\Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}})$                   | -                                                          | -       | > 2.5                                             |  |
| $m_{ii}  [\text{GeV}]$                                               | > 200                                                      | -       | > 200                                             |  |
| $m_{\rm CT}  [{\rm GeV}]$                                            | >350, 450, 550                                             | -       | -                                                 |  |
| $m_{\rm T}^{\rm min}({\rm jet}_{1-4}, E_{\rm T}^{\rm miss})$ [GeV]   | -                                                          | > 250   | -                                                 |  |
| $m_{\rm eff}$ [GeV]                                                  | -                                                          | -       | > 1300                                            |  |
| $\mathcal{A}$                                                        | -                                                          | -       | > 0.8                                             |  |



|                                                                                                     | b1L-SRAx  | b1L-SRA300-2j   | b1L-SRB  |
|-----------------------------------------------------------------------------------------------------|-----------|-----------------|----------|
| Number of leptons $(e, \mu)$                                                                        | 1         | 1               | 1        |
| $N_{\rm jets} (p_{\rm T} > 35 \ GeV)$                                                               | $\geq 2$  | = 2             | $\geq 2$ |
| <i>b</i> -jets                                                                                      | any 2     | $j_1$ and $j_2$ | any 2    |
| $E_{\rm T}^{\rm miss}   [{\rm GeV}]$                                                                | > 200     | > 200           | > 200    |
| $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}  [{\rm GeV}^{1/2}]$                                          | > 8       | > 8             | > 8      |
| $m_{b\ell}^{\min}$ [GeV]                                                                            | < 170     | < 170           | < 170    |
| $\Delta \phi^j_{\min}$                                                                              | > 0.4     | _               | > 0.4    |
| $\min[\Delta\phi(\text{jet}_{1-2}, E_{\text{T}}^{\text{miss}})]$                                    | _         | > 0.4           | _        |
| $am_{T2}$ [GeV]                                                                                     | > 250     | > 250           | > 200    |
| $m_{\rm T}$ [GeV]                                                                                   | > 140     | > 140           | > 120    |
| $m_{bb}$ [GeV]                                                                                      | > 200     | > 200           | < 200    |
| $m_{\rm eff}$ [GeV]                                                                                 | > 600,750 | > 300           | > 300    |
| $m_{\mathrm{T}}^{\mathrm{min}}(b\text{-jet}_{1-2}, E_{\mathrm{T}}^{\mathrm{miss}})  [\mathrm{GeV}]$ |           | _               | > 200    |
| $\Delta \dot{\phi}(b_1, E_{\mathrm{T}}^{\mathrm{miss}})$                                            | _         | _               | > 2.0    |



Stransverse Mass,  $m_{\mathrm{T2}}$ 

- Branches a and b, partly unreconstructed.
- Sum of measured 4-vec momenta:

 $p_i = (E_i, \vec{p}_{Ti}, p_{zi}) ; i \in \{a, b\}.$ 

• Sum of unmeasured 4-vec momenta:  $q_i = (F_i, \vec{q}_{Ti}, q_{zi}).$ 



- $m_{\rm T}$  in branch *i*:  $m_{\rm Ti}^2 = \left(\sqrt{p_{\rm Ti}^2 + m_{p_i}^2} + \sqrt{q_{\rm Ti}^2 + m_{q_i}^2}\right)^2 (\vec{p}_{\rm Ti} + \vec{q}_{\rm Ti})^2$
- $m_{\rm T2} \equiv \min_{\vec{q}_{\rm Ta} + \vec{q}_{\rm Tb} = \vec{p}_{\rm T}^{\rm miss}} \{ \max(m_{\rm Ta}, m_{\rm Tb}) \},$
- Minimisation over allocation of  $\vec{p}_{T}^{miss}$  between  $\vec{q}_{Ta}$  and  $\vec{q}_{Tb}$  of the maximum of the corresponding  $m_{Ta}$  or  $m_{Tb}$ , with assumption of  $m_{q_a}$  and  $m_{q_b}$  in computation of  $m_{Ta}$  and  $m_{Tb}$ .
- Minimum parent mass consistent with the observed kinematic distributions under the inputs  $m_{q_a}$  and  $m_{q_b}$ .



Asymmetric  $m_{\mathrm{T2}}$ ,  $am_{\mathrm{T2}}$ 

- Measured particles: For branch a, this is one of the b-jets and for branch b this is the second b-jet and the charged lepton. The b-jets are identified based on the highest b-tagging weights. Since there are two ways of assigning the b-tagged jets to branches a and b, both  $m_{\rm T2}$  values are computed and the minimum kept for the final discriminant.
- Unmeasured particles: For branch *a*, this is a *W* boson that decays leptonically, with the charged lepton unidentified as such. The unmeasured particle for branch *b* is the neutrino associated with the measured charged lepton.
- Input masses:  $m_{q_a} = m_W = 80 \text{ GeV}$  and  $m_{q_b} = m_{\nu} = 0 \text{ GeV}$ .



• 
$$m_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \left(1 - \cos \Delta \phi(\vec{\ell}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})\right)}$$

•  $\Delta m_{\rm T}^{\ \alpha} = m_{\rm T} - m_{\rm T}^{\ \alpha}$ , where  $m_{\rm T}^{\ \alpha}$  uses the lepton and  $\nu^{\alpha}$ , and the  $p_{\rm T}$  of the reconstructed  $t\bar{t}$  system under the SM hypothesis,  $p_{\rm T}(t\bar{t})$ .

• 
$$\alpha \equiv \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{t}_1}} \sim \frac{p_{\mathrm{T}}(\tilde{\chi}_1^0 \tilde{\chi}_1^0)}{p_{\mathrm{T}}(\tilde{t}_1 \tilde{t}_1)}$$

- Mass ratio  $\alpha = 0.135$  is used throughout the stop 1L paper, as is calculated from  $m_{\tilde{t}_1} = 200 \text{ GeV}$  and  $m_{\tilde{\chi}_1^0} = 27 \text{ GeV}$ .
- $\chi^2$  minimization to define hadronic top mass candidate,  $t_{had}^{ISR}$ .
- For signal hypothesis, collinearity of each  $\tilde{t}_1$  with both of its decay products is assumed. Can calculate transverse-momentum vector of neutrino from leptonic *W*-boson decay by subtracting momenta of the LSPs from  $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ , when assuming a specific mass ratio  $\alpha$ :  $\vec{p}_{\mathrm{T}}(\nu^{\alpha}) = (1-\alpha)\vec{p}_{\mathrm{T}}^{\mathrm{miss}} - \alpha \vec{p}_{\mathrm{T}}(t_{\mathrm{had}}^{\mathrm{ISR}} + b_{\mathrm{lep}} + \ell)$



- In the SM, Higgs mass is destabilized by large quantum corrections.
- Severe fine-tuning is required to obtain the measured mass of 125 GeV.
- $\rightarrow$  Naturalness or Higgs fine-tuning problem.

$$m_H^2 \approx (125 \text{ GeV})^2 = m_H^2 (\text{tree}) - \frac{\lambda_t^2}{8\pi^2} (\Lambda^2 + \int_0^1 dx 2\Delta \ln \frac{\Lambda^2 + \Delta}{\Delta}) + \dots$$

- If SM is valid up th the Planck scale, then  $\Lambda \sim M_{\rm plank} \sim 10^{19}\,{\rm GeV}.$
- In SUSY, the correction from the top quark is cancelled by an (almost) equal but opposite contribution from its SUSY partner, the stop.

$$\begin{split} m_{H}^{2} &\approx (125 \text{ GeV})^{2} = m_{H}^{2}(\text{free}) - \frac{\lambda_{t}^{2}}{8\pi^{2}}(\Lambda^{2} + \int_{0}^{1} dx 2\Delta \ln \frac{\Lambda^{2} + \Delta}{\Delta}) \\ &+ \frac{\lambda_{\tilde{t}}}{16\pi^{2}}(2\Lambda^{2} - m_{\tilde{t}_{1}}^{2} \ln \frac{\Lambda^{2} + m_{\tilde{t}_{1}}^{2}}{m_{\tilde{t}_{1}}^{2}} - m_{\tilde{t}_{2}}^{2} \ln \frac{\Lambda^{2} + m_{\tilde{t}_{2}}^{2}}{m_{\tilde{t}_{2}}^{2}}) + \dots \end{split}$$

- Stop must be light for cancellation to happen.
- Above  $\mathcal{O}(1)$  TeV corrections start to get large.

