Sensitivity of the direct stop pair production analyses in phenomenological MSSM simplified models with the ATLAS detectors

Ian Snyder, on behalf of the ATLAS Collaboration

University of Oregon

December 12, 2017

Introduction

- Phenomenological Minimal Supersymmetric Model (pMSSM) uses assumptions from experimental constraints or other features
- Reduces MSSM parameters from 105 to 19
- A specific set of 19 values is one model point
- Sample grid randomly for each parameter
- In Run 1: 22 analyses, 310,327 model points considered

T. Rizzo, SLAC Summer Institute 2012

- Most easily visualized by projecting fraction of models excluded onto mass plane of particles
- Black points are (nearly) 100% excluded, dark blue is 0%
- Includes many analyses
- White line shows exclusion from simplified models
- Lower limits compared to simplified models - 100% branching fraction not assumed

Run 1 results, arXiv:1508.06608

Stop Interpretations

- See Sara's talk for full results of simplified models
 - 0-lepton: SUSY-2016-15
 - 1-lepton: SUSY-2016-16
 - 2-lepton: SUSY-2016-17
- 3 pMSSM scenarios in direct stop pair production searches
 - Wino next-to-lightest supersymmetric partner (NLSP)
 - Non-asymptotic higgsino, higgsino lightest supersymmetric partner (LSP)
 - Well-tempered neutralino, bino/higgsino mix

- Final states are consistent with simplified models with $t\bar{t} + E_T^{miss}$ (or $tb + E_T^{miss}$)
 - For models where the lightest third generation partners are mostly partners of left-handed SM particle, production of light \tilde{b} with $m_{\tilde{b}} \approx m_{\tilde{t}}$ also considered

Parameter Values

pMSSM-inspired simplified models: for each model vary 2 parameters out of 19, hold rest constant

Scenario	Wino NLSP	Higgsino LSP	Bino/higgsino mix
Models	pMSSM	simplified	pMSSM
Mixing parameters		$X_t/M_S \sim \sqrt{6}$	
$\tan \beta$	20	20 or 60	20
M_S [TeV]	0.9 - 1.2	1.2	0.7 - 1.3
M_3 [TeV]	2.2	2.2	1.8
Scanned mass parameters	(M_1, m_{q3L})	$(\mu, m_{q3L}/m_{tR})$	$(M_1, m_{q3L}/m_{tR})$
Electroweakino masses [TeV]	$\mu = \pm 3.0$	$M_2 = M_1 = 1.5$	$M_2 = 2.0$
	$M_2 = 2M_1 \ll \mu $	$\mu \ll M_1 = M_2$	$M_1 \sim -\mu, M_1 < M_2$
Additional requirements	-	-	$0.10 < \Omega h^2 < 0.12$
	-	-	$\Delta < 100$
Sbottom pair production	considered	-	considered
\tilde{t}_1 decay modes and their BR [%]	$\tilde{t}_1 \sim \tilde{t}_L$	(a) / (b) / (c)	(a) / (b)
$\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	< 5	$\sim 25/{\sim}$ 45/ ~ 33	< 10 / < 10
$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	~ 65	$\sim 50/{\sim 10}/{\sim 33}$	$\sim 50/\sim 10$
$\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0$	~ 30	$\sim 25/\sim 45/\sim 33$	$\sim 20/\sim 40$
$\tilde{t}_1 \rightarrow t \tilde{\chi}_3^0$	-	-	$\sim 20/{\sim 40}$
\tilde{b}_1 decay modes and their BR [%]	$\tilde{b}_1 \sim \tilde{t}_L$	-	$\tilde{b}_1 \sim \tilde{b}_L$
$\tilde{b}_1 \rightarrow b \tilde{\chi}^0_1$	< 5	-	< 5
$\tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	~ 65	-	~ 85
$ \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0$	~ 30	-	< 5
$ \tilde{b}_1 \rightarrow b \tilde{\chi}_3^0$	-	-	< 5

Ian Snyder (University of Oregon)

- Motivated by models with gauge unification at GUT scale (e.g. cMSSM and mSUGRA)
 - LSP is bino-like (mass=M₁)
 - NLSP is wino-like (mass=M₂)
 - Set $M_2 = 2M_1, \ m_{\tilde{t}_1} > M_1$
 - Scan M₁ and m_{q̃3L}
 - Allowed decays:
 - $\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0 \rightarrow h/Z \tilde{\chi}_1^0$, maximum 33%, Z/h depends on sign of μ
 - $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$
 - $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ also considered where $m_{\tilde{t}} = m_b + m_{\tilde{\chi}_1^{\pm}}$

Wino-NLSP pMSSM Results

lan Snyder (University of Oregon)

stop pair production in pMSSM Interpr

Non-Asymptotic Higgsino Model

- "Natural" model: low-mass stops and higgsino-like LSP
- Scan μ , $(m_{\tilde{q}3L}/m_{\tilde{t}R})$
- Assumes 3 sets of branching ratios
 - $\tilde{t}_1 \rightarrow t \tilde{\chi}_2^0$
 - $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$
 - $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$
- Branching ratio (33%, 33%, 33%)
 - pMSSM model with \tilde{t}_1 mostly consisting of \tilde{t}_L and $\tan\beta = 60$
- Branching ratio (45%, 10%, 45%)
 - pMSSM model with $m_{\tilde{q}L3} < m_{\tilde{t}R}$
- Branching ratio (25%, 50%, 25%)
 - pMSSM model with m_{t̃R} < m_{q̃L3} and tanβ =20

- Reconstructing soft lepton is important for right-handed scenario
 - Large BR to b χ₁[±]
 - Less useful for left-handed scenario

Non-Asymptotic Higgsino Results

$\Delta m(\widetilde{\chi}_{1}^{t}, \widetilde{\chi}_{1}^{0})$ [GeV] s = 13 TeV. 36.1 fb⁻¹ 25 Limit at 95% CL Observed limit 20Ē Expected limit (±10er $-\tilde{t}_{i} = \tilde{t}_{i}$ $-\tilde{t}_{i} = \tilde{t}_{i}$ 15F $-\tilde{t}_1 = \tilde{t}_1 (\text{large tan}\beta)$ $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} t \tilde{\chi}_1^{0}$ 10 $\widetilde{\chi}^{s}_{1} \rightarrow W \ \widetilde{\chi}^{0}_{1} \quad \widetilde{\chi}^{0}_{2} \rightarrow h \ \widetilde{\chi}^{0}_{1}, \ Z \ \widetilde{\chi}^{0}_{1} \, .$ $B(t\widetilde{\gamma}_{..}^{0}, b\widetilde{\gamma}_{..}^{\pm}, t\widetilde{\gamma}_{..}^{0}) =$ ξ, small tanβ: (45, 10, 45)% 5Ē . large tanß: (33, 33, 33)% t.: (25, 50, 25)% 600 700 800 900 1000 1100 1200 1300 1400 m_ī [GeV]

0-lepton

lan Snyder (University of Oregon)

Well-tempered neutralino pMSSM Model

- Provides a viable dark-matter candidate
 - Neutralino annihilation rate consistent with dark-matter relic density (0.10 < Ωh² < 0.12)
- LSP is a mix of bino and higgsino to address naturalness
- Electrowinos are compressed, 20-50 GeV of lightest state
- SM Higgs mass
- Scan M_1 , $(m_{\tilde{q}3L}/m_{\tilde{t}R})$

Well-tempered neutralino pMSSM Results

Limits for right-handed and left-handed stops

 Both stop and sbottom considered in *t*_L scenario, doubles signal acceptance

op pair production in pMSSM Interpre

- 3 interpretations from direct stop pair production with 0, 1, and 2 lepton final states
- pMSSM-inspired simplifed models were designed based on the Run-1 pMSSM and Run-2 simplifed models results
- New limits set for each of the models

