Searches for direct pair production of stops in final states containing taus or H/Z bosons with the ATLAS detector

A. Miucci on behalf of the ATLAS collaboration

EXPERIMENT

Search for top squark in ATLAS: Motivations

- The SUSY solution to the Higgs mass divergency
 - 2 x top squarks: same coupling as top quark, λ
 - Quadratic corrections cancel
- Top Squark is expected to be light:
 - 2nd order perturbative corrections to the Higgs mass
 - stopLR mixing is large, stops can be light

2

List of stop pair production publication

- ATLAS has a broad search program in the context of stop search
 - Final states containing taus
 - Final states with h/Z bosons

Looking at the different corners of SUSY stop spectrum

Short Title	Journal reference	Date	√s (TeV)	L	Links
MET + jet search 13 TeV 2016	Submitted to JHEP	09-NOV-17	13	36 fb-1	1711.03301
Stop pair; dijet pairs, RPV	Submitted to EPJC	19-OCT-17	13	37 fb-1	1710.07171
Stop pair; 2 leptons, b-jets, RPV	Submitted to PRD	16-OCT-17	13	36 fb-1	1710.05544
Stop pair; 0 lepton	Submitted to JHEP	13-SEP-17	13	36 fb-1	1709.04183
Sbottom pair, stop pair; 0-1 leptons, b-jets	Submitted to JHEP	30-AUG-17	13	36 fb-1	1708.09266
Stop pair; 2 leptons	Submitted to EPJC	10-AUG-17	13	36 fb-1	1708.03247
Stop pair; Z/h boson	JHEP 08 (2017) 006	13-JUN-17	13	36 fb-1	1706.03986
Two same-sign leptons or three leptons	JHEP 09 (2017) 084	12-JUN-17	13	36 fb-1	1706.03731
Gluino pair, stop pair; 1 lepton, RPV	JHEP 09 (2017) 88	27-APR-17	13	36 fb-1	1704.08493
Stop pair; Stau, gravitino	ATLAS-CONF-2017-079	11-DEC-17	13	36 fb-1	

b

Search for top squarks in tau channel: Signal Regions

 u^{b}

Search for top squarks in tau channel: Backgrounds

- *Leptonic-Hadronic:* Data-driven estimation for fake *τ*+e/μ (Fake factor)
 - Anti ID: Additional τ selection, loose working point and orthogonal to the other
 - Fake factor: ratio of fakes τ between the two selection estimated in dedicated Measurement region,
 - Number of fake *τ* events: Fake factor * Anti ID in the Target Region
- Hadronic-Hadronic: Additional **ttbar Control Region** for estimation of ttbar event reconstructed as **fake** τ
 - misidentified jets or electrons as tau, from the W decay of one of the ttbar leg

Search for top squarks in tau channel: Backgrounds

- Control Regions for background normalization + Validation Regions
 - Maximum likelihood fit: all the Control region at the same time
 - Common Backgrounds: ttbar, diboson, ttV

b

Search for top squarks in tau channel: Signal Regions

SUSY17 Mumbai 11th-15th Dec. 2017

Search for top squarks in tau channel: Limits

 $\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]

0.15

Signal channel

SR LH

 $S_{\rm obs}^{95}$

5.4

Model independent limits

p(s=0)(Z)

0.32 (0.47)

 CL_b

0.65

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

 $S_{\rm exp}^{95}$

 $4.5^{+2.6}_{-1.5}$

Direct top squark pair production with a Higgs or Z boson

- Typical decay of stop to **wino-bino** (BinoLSP) models
 - represented by cMSSM/mSUGRA, generally motivated by the GUT
- Two possible branches:
 - using simplified models:
 - with the exception of $\tilde{t}_{1,2}$ and $\tilde{\chi}^0_{1,2}$ all the SUSY particles are decoupled
 - 100% branching ratio for each branch in two independent searches

^b UNIVERSITÄT BERN

- **Higgs boson** in the final state
 - H decaying in b-quark pair
 - leptonic decay of the W associated to the top

ATLAS-CONF-2016-20 || JHEP 08 (2017) 006

- 1 b-jet from top decay
- **Z boson** in the final state
 - leptonic decay of the Z
 - leptonic decay of the W associated to the top
 - 1 b-jet from the top decay

Direct top squark with a Higgs or Z: **Backgrounds**

- Control Regions for background normalization + Validation Regions
 - Z channel: Fake leptons (data-driven), Multi-bosons, ttZ
 - Higgs Channel: top pair production (3 Control Regions, one per Signal Region)

Direct top squark pair production with Z bosons

Analysis strategy

- Z decay leptonically \Rightarrow clean signature
- 3 light leptons (e or μ) in the final states
- Large E_T^{miss}
- 1 *b-jet* coming from the t decay

b

• 3 Signal regions:

optimised for different mass splitting

$$\Delta m = m_{\tilde{t_1}} - m_{\tilde{\chi_2^0}}$$

Requirement / Region	$\mathrm{SR}^{3\ell 1b}_\mathrm{A}$	$\mathrm{SR}^{3\ell1b}_\mathrm{B}$	$\mathrm{SR}^{3\ell 1b}_{\mathrm{C}}$
Number of leptons	≥ 3	≥ 3	≥ 3
$n_{b-{ m tagged jets}}$	≥ 1	≥ 1	≥ 1
$ m_{\ell\ell} - m_Z $ [GeV]	< 15	< 15	< 15
Leading lepton $p_{\rm T}$ [GeV]	> 40	> 40	> 40
Leading jet $p_{\rm T}$ [GeV]	> 250	> 80	> 60
Leading <i>b</i> -tagged jet $p_{\rm T}$ [GeV]	> 40	> 40	> 30
$n_{\rm jets} \ (p_{\rm T} > 30 {\rm ~GeV})$	≥ 6	≥ 6	≥ 5
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 100	> 180	> 140
$p_{\rm T}^{\ell\ell} \; [{\rm GeV}]$	> 150	_	< 80

SUSY17 Mumbai 11th-15th Dec. 2017

Direct top squark pair production with Higgs boson

Analysis strategy

- H →bb
- high number of b-jets in the final state
- At least 1 lepton \Rightarrow reduce QCD multi-jet
- Large Hadronic activity and Ermiss

• 3 Signal regions:

optimised for different mass splitting

Higgs boson channel

$$\Delta m = m_{\tilde{t_1}} - m_{\tilde{\chi_2^0}}$$

Requirement / Region	$\mathrm{SR}^{1\ell4b}_\mathrm{A}$	$\mathrm{SR}^{1\ell4b}_\mathrm{B}$	$\mathrm{SR}^{1\ell4b}_\mathrm{C}$
Number of leptons	1 - 2	1 - 2	1 - 2
$n_{b-{ m tagged jets}}$	≥ 4	≥ 4	≥ 4
$m_{\rm T} {\rm [GeV]}$	—	> 150	> 125
$H_{\rm T} [{ m GeV}]$	> 1000	—	—
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 120	> 150	> 150
Leading <i>b</i> -tagged jet $p_{\rm T}$ [GeV]	_	_	< 140
$m_{bb} [{ m GeV}]$	95 - 155	—	—
$p_{\mathrm{T}}^{bb} \mathrm{[GeV]}$	> 300	—	—
$n_{\rm jets} \ (p_{\rm T} > 60 { m GeV})$	≥ 6	≥ 5	—
$n_{\rm jets} \ (p_{\rm T} > 30 \ {\rm GeV})$	_	_	≥ 7

ALBERT EINSTEIN CENTER

AEC

Exclusion limits for the H/Z channel

Z channel		Model i	ndependent limits
	$\mathrm{SR}^{3\ell 1b}_\mathrm{A}$	$\mathrm{SR}^{3\ell 1b}_\mathrm{B}$	$\mathrm{SR}^{3\ell 1b}_{\mathrm{C}}$
$S_{\rm obs}^{95}$	4.5	3.8	5.8
$S_{\rm exp}^{95}$	$4.2^{+1.9}_{-0.4}$	$4.9^{+1.5}_{-1.1}$	$4.4^{+1.8}_{-0.5}$
$\sigma_{ m vis}$ [fb]	0.13	0.10	0.16
p(s=0)	0.42	0.93	0.23

Higgs channel		Model ind	Model independent limits		
	$\mathrm{SR}^{1\ell4b}_\mathrm{A}$	$\mathrm{SR}^{1\ell4b}_\mathrm{B}$	$\mathrm{SR}^{1\ell4b}_{\mathrm{C}}$		
$S_{ m obs}^{95}$	7.8 9.6 ^{+4.1}	14.6 15 5 ^{+5.6}	15.6 10 4 ^{+4.2}		
$\sigma_{ m vis}$ [fb]	0.21	0.40	0.43		
p(s=0)	0.63	0.82	0.11		

 t_1

p

- $m(\tilde{\chi}_1^0) = 0, m(\tilde{\chi}_2^0) > 130 \text{ GeV}$
 - needed for on-shell decays of Higgs and Z

•

 $\tilde{\chi}_1^0$

Z

UNIVERSITÄT BERN

Another possible interpretation

- \tilde{t}_2 pair production
- simplified model BR =100%
 - important for compressed \tilde{t}_1 $\tilde{\chi}_1^0$ scenarios

Conclusions

- Searches for top squarks based on full 2015+2016 data (36 fb-1) have given results consistent with the SM expectations.
- Limits on the 3rd generation squark masses close to 1 TeV for the most favorable scenarios

- The search for SUSY continues!
- Exciting results ahead with the full Run 2 dataset

b

Thank you for your attention

Process	Matrix element	PDF set	Parton shower	PDF set	Tune
tī	Powheg-Box v2	CT10	Рутніа 6.428	CTEQ6L1	Perugia 2012
single top	Powheg-Box v1	CT10	Рутніа 6.428	CTEQ6L1	Perugia 2012
tĪH	aMC@NLO 2.2.2	CT10	Herwig++ 2.7.1	CTEQ6L1	UE-EE-5
$t\bar{t}V$	aMC@NLO 2.3.3	NNPDF3.0 NLO	Рутніа 8.210	NNPDF2.3 LO	A14
tWZ	aMC@NLO 2.3.2	NNPDF3.0 NLO	Рутніа 8.210	NNPDF2.3 LO	A14
tΖ	MadGraph5 2.2.1	CTEQ6L1	Рутніа 6.428	CTEQ6L1	Perugia 2012
multi-top	MadGraph5 2.2.2	NNPDF2.3 LO	Рутніа 8.186	NNPDF2.3 LO	A14
V + jets	Sherpa 2.2.1	NNPDF3.0 NNLO			
<i>VV</i> (1)	Sherpa 2.2.1	NNPDF3.0 NNLO			
VV (2)	Sherpa 2.1.1	CT10			
VVV	Sherpa 2.2.2	NNPDF3.0 NNLO			
SUSY	МадGRарн5 2.2.3 and 2.3.3	NNPDF2.3 LO	Рутніа 8.186, 8.205 or 8.210	NNPDF2.3 LO	A14