

Searches for stops in scenarios with R-parity violating sparticle decays with ATLAS

FRANCESCA C. UNGARO

for the ATLAS collaboration

11-15 December 2017, SUSY 17, Mumbai, India

R-parity violating SUSY

stop (\tilde{t}) pair production with R-parity violating decays

Searches in R-conserving scenario in <u>S. Strandberg</u>, <u>I. M. Snyder</u> and <u>A. Miucci</u> talks - not suitable in R-violating context

LSP stop, LQD decay

13 TeV, 36.1/fb <u>arXiv:1710.05544</u>

- additional U(1)_{B-L} symmetry with right-handed neutrino supermultiplets
- Suppressed couplings prevent short proton lifetime

Analysis strategy

- Require two opposite charge leptons (e, μ) and two jets (at least one w / bottom quark - b-tagged)
- build b-l pairs minimising the mass asymmetry

$$m_{b\ell}^{\text{asym}} = \frac{m_{b\ell}^0 - m_{b\ell}^1}{m_{b\ell}^0 + m_{b\ell}^1}$$

- require small mass asymmetry
- use larger mass as discriminator

Background estimation

- Major backgrounds: top pairs, singletop, Z+jets
- estimated from MC normalised to data in control region

No significant execs over SM expectation Interpret results as exclusion limits

Results derived for various assumptions on the branching ratio in different decay modes

LSP stop, UDD decay

large enough coupling for prompt decay (but no single top squark resonant production)

Analysis strategy

- Four jets in the final state (possibly b-tagged)
- Pair jets with minimum ⊿R to build stop candidate:

$$\Delta R_{\min} = \min\left\{\sum_{i=1,2} |\Delta R_i - 1|\right\}$$

• discriminants: $|\cos(\theta^*)|$, $\mathcal{A} = \frac{|m_1 - m_2|}{m_1 + m_2}$,

$$m_{\rm avg} = \frac{1}{2}(m_1 + m_2)$$

13 TeV, 36.7/fb **<u>arXiv:1710.07171</u>**

Background estimation

multi-jet QCD events

Estimated from data with "matrix method"

<u>arXiv:1710.07171</u>

 $N_{\rm D} = N_{\rm A} \times N_{\rm F}/N_{\rm C}$

top pairs

• Estimated with Monte Carlo simulation

Test compatibility of results with resonance hypothesis Scan in windows of m_{avg} of 12.5 GeV

No significant excess over SM expectation Interpret results as exclusion limits

Francesca C. Ungaro – SUSY 17 – 11-15 December 2017

Multi-jet plus one lepton final state

Right-handed stop

- decay into a pure bino or higgsino LSP and top or bottom quarks
- LSP decays promptly through UDD coupling

Analysis strategy

- Select events with at least one electron or muon and 8-≥12 jets
- Split events in bins of jet multiplicity and 0 or ≥3 b-jets

Background estimation

W/Z+jets: exploit scaling of jet multiplicity

$$r(j) \equiv N_{j+1}^{W/Z+jets} / N_j^{W/Z+jets}$$
$$r(j) = c_0 + c_1 / (j+1)$$

 extrapolate from non b-tagged to be tagged samples with MC

13 TeV, 36.1/fb <u>arXiv:1704.08493</u>

Multi-jet plus one lepton final state

Right-handed stop

- decay into a pure bino or higgsino LSP and top or bottom quarks
- LSP decays promptly through UDD coupling

Analysis strategy

- Select events with at least one electron or muon and 8-≥12 jets
- Split events in bins of jet multiplicity and 0 or ≥3 b-jets

Background estimation

top pairs: data template of 5-jets events

probability that additional jet is a b-jet

$$f_{(j+1),b} = f_{j,b} \cdot x_0 + f_{j,(b-1)} \cdot x_1 + f_{j,(b-2)} \cdot x_2$$

additional jet... non b-tagged b-tagged second b-tagged

13 TeV, 36.1/fb <u>arXiv:1704.08493</u>

Multi-jet plus one lepton final state

No significant excess over SM expectation

Interpret results as model-dependent exclusion limits by simultaneous fit of all analysis bins

higgsino LSP: excluded stop masses up to 1.1 TeV bino LSP: excluded stop masses up to 1.25 TeV

arXiv:1704.08493

- ATLAS experiment searches for stop production in R-violating scenarios
- Results on full 2015+2016 dataset collected at $\sqrt{s}=13$ TeV
- No significant excess over the Standard Model prediction observed...
- ... but keep on the excitement for the full Run-2 dataset results

Thank you for your attention... ...and for bringing us here!

CERN

Taj Mahal Hotel

Back Up

LSP stop, LQD decay

- additional U(1)_{B-L} symmetry with right-handed neutrino supermultiplets
 - vev for right-handed scalar neutrino to spontaneously break B-L symmetry
 - lepton number violation only
 - RPV couplings suppressed (related to neutrino masses)
 - -> prevent short proton lifetime and consistent with L number violation
 - branching ratio related to neutrino mass hierarchy
 - normal mass hierarchy mu b BR up to 90%
 - reverted mass hierarchy e b decay ~100%
 - regions optimised with 50% BR

Francesca C. Ungaro – SUSY 17 – 11-15 December 2017

		-							
	Region $N_b m_{b\ell}^0 \text{ [GeV]}$		$H_{\rm T}$ [GeV]	$m_{b\ell}^1$ (rej)[GeV]	$m_{\ell\ell}$ [GeV]	$m_{\rm CT}$ [GeV]			
	SR800 ≥ 1 > 800		> 1000	> 150	> 300	_			
	$SR1100 \ge 1 > 1100$		> 1100	> 1000	> 150	> 300	-		
	CRst = 2 [2		[200,500]	< 800	< 150	> 120	> 200		
	CRtt ≥ 1		[200,500]	[600,800]	< 150	> 300	< 200*		
$CRZ \ge 1$		> 700	> 1000	-	[76.2,106.2]	-			
	$VRm_{b\ell}^0$	≥ 1	> 500	[600,800]	< 150	> 300	-		
	$VRm_{h\ell}^{1}(rej) \ge$		[200,500]	[600,800]	> 150	> 300	-		
	VRH _T		[200,500]	> 800	< 150 > 300		-		
	VRZ	= 0	[500,800]	> 1000	> 150	> 300	-		
			• •			~			
Source \ Region SR800 SF								SR1100	
Experi	mental uncertai	inty							
b-tagging 3%							5%		
Jet ene	rgy resolution				2%			10%	
Jet ene	rgy scale				1%			3%	
Electrons 1%								4%	
Muons 1%								3%	
Theoretical modeling uncertainty									
MC statistical uncertainty 8%								17%	
et 8%							45%		
Single-top 21%							22%		
Z+jets 2%							4%		
Diboson 4%							3%		
$t\bar{t} + W/$	Z				1%			1%	
W+jets 1%								1%	

	SR800				SR1100			
	inclusive	ee	eμ	μμ	inclusive	ee	eμ	μμ
Observed yield	2	0	0	2	1	0	0	1
Total post-fit bkg yield	5.2 ± 1.4	1.8 ± 0.5	2.1 ± 0.8	1.35 ± 0.32	$1.2^{+0.6}_{-0.5}$	$0.51^{+0.22}_{-0.20}$	$0.44^{+0.39}_{-0.33}$	0.22 ± 0.13
Post-fit single-top yield	2.0 ± 1.3	0.6 ± 0.4	1.1 ± 0.7	0.32 ± 0.20	0.32 ± 0.29	0.11 ± 0.10	0.21 ± 0.19	-
Post-fit Z+jets yield	1.40 ± 0.33	0.80 ± 0.24	0.01 ± 0.01	0.59 ± 0.14	0.47 ± 0.15	0.28 ± 0.10	-	0.19 ± 0.11
Post-fit $t\bar{t}$ yield	1.0 ± 0.5	0.27 ± 0.14	0.54 ± 0.25	0.21 ± 0.10	$0.21^{+0.55}_{-0.21}$	$0.06^{+0.16}_{-0.06}$	$0.13^{+0.34}_{-0.13}$	$0.01^{+0.03}_{-0.01}$
Post-fit diboson yield	0.64 ± 0.23	0.14 ± 0.05	0.31 ± 0.12	0.19 ± 0.08	0.13 ± 0.05	0.06 ± 0.03	0.07 ± 0.03	0.01 ± 0.01
Post-fit $t\bar{t} + V$ yield	0.12 ± 0.03	0.01 ± 0.01	0.07 ± 0.02	0.04 ± 0.02	0.03 ± 0.01	-	0.01 ± 0.01	0.01 ± 0.01
Post-fit W+jets yield	0.03 ± 0.03	-	0.04 ± 0.04	-	$0.01^{+0.02}_{-0.01}$	-	$0.01^{+0.02}_{-0.01}$	-
Total MC bkg yield	4.9 ± 1.2	1.7 ± 0.4	2.0 ± 0.7	1.23 ± 0.28	$1.1^{+0.6}_{-0.5}$	$0.46^{+0.21}_{-0.19}$	$0.43^{+0.40}_{-0.33}$	0.18 ± 0.10
MC single-top yield	1.9 ± 1.0	0.57 ± 0.34	1.0 ± 0.6	0.29 ± 0.17	0.29 ± 0.25	0.10 ± 0.08	0.19 ± 0.17	-
MC Z+jets yield	1.15 ± 0.21	0.65 ± 0.17	0.01 ± 0.01	0.48 ± 0.09	0.38 ± 0.10	0.23 ± 0.07	-	0.15 ± 0.09
MC $t\bar{t}$ yield	1.1 ± 0.5	0.29 ± 0.14	0.57 ± 0.26	0.22 ± 0.10	$0.22^{+0.57}_{-0.22}$	$0.07^{+0.18}_{-0.07}$	$0.14^{+0.36}_{-0.14}$	$0.01^{+0.03}_{-0.01}$
MC diboson yield	0.64 ± 0.23	0.14 ± 0.05	0.31 ± 0.12	0.19 ± 0.08	0.13 ± 0.05	0.06 ± 0.03	0.07 ± 0.03	0.01 ± 0.01
MC $t\bar{t} + V$ yield	0.12 ± 0.03	0.01 ± 0.01	0.07 ± 0.02	0.04 ± 0.02	0.03 ± 0.01	-	0.01 ± 0.01	0.01 ± 0.01
MC W+jets yield	0.03 ± 0.03	-	0.04 ± 0.04	-	$0.01^{+0.02}_{-0.01}$	-	$0.01^{+0.02}_{-0.01}$	-
S ⁹⁵ _{exp}	$6.4^{+3.0}_{-1.9}$	$4.1^{+1.8}_{-1.1}$	$4.0^{+2.2}_{-0.9}$	$3.9^{+1.6}_{-0.7}$	$3.9^{+2.4}_{-0.5}$	$3.0^{+1.3}_{-0.0}$	$3.0^{+1.3}_{-0.0}$	$3.1^{+0.6}_{-0.1}$
$S_{\rm obs}^{95}$	4.0	3.0	3.0	4.8	3.9	3.0	3.1	4.1
$\sigma_{ m vis}[m fb]$	0.11	0.08	0.08	0.13	0.11	0.08	0.08	0.11

Francesca C. Ungaro – SUSY 17 – 11-15 December 2017

Selection	$m_{\tilde{t}} = 100 \text{ GeV}$	$m_{\tilde{t}} = 500 \text{ GeV}$	$m_{ ho} = 1500 \text{ GeV}$
Total	$(558.0 \pm 0.6) \cdot 10^5$	19000 ± 130	1710 ± 10
Trigger	221900 ± 420	11900 ± 100	1650 ± 10
ΔR_{\min}	18910 ± 120	2470 ± 50	1050 ± 5
Inclusive selection	1359 ± 36	253 ± 16	51 ± 2
b-tagged selection	569 ± 24	65 ± 8	_

			-		
inclusive	$m_{\tilde{t}}$ [GeV]	Window [GeV]	NData	$N_{\rm Bkg}$ (± stat. ± syst.)	N_{Sig} (± stat. ± syst.)
	100	[100, 110]	5899	5910± 90± 70	$519 \pm 23 \pm 68$
	125	[120, 135]	13 497	$13450\pm120\pm180$	1890 ±50 ±190
	150	[140, 160]	18 609	18390±130± 250	2540 ±50 ±130
	175	[165, 185]	17742	17800±130± 250	2280 ±50 ±210
	200	[185, 210]	19844	19660±140± 290	2250 ±50 ±170
	225	[210, 235]	14 898	15180±120± 230	1620 ±40 ±100
	250	[230, 260]	13 689	13750±110± 220	$1440 \pm 80 \pm 140$
	275	[255, 285]	9808	9860±100± 170	$1010 \pm 70 \pm 80$
	300	[275, 310]	8514	$8790 \pm 90 \pm 60$	$789 \pm 52 \pm 31$
	325	[300, 335]	6180	$6330 \pm 80 \pm 20$	$600 \pm 50 \pm 50$
	350	[320, 365]	5802	$5900 \pm 70 \pm 20$	$509 \pm 39 \pm 19$
	375	[345, 390]	4113	$4250 \pm 60 \pm 90$	$324 \pm 25 \pm 31$
	400	[365, 415]	3531	$3590 \pm 60 \pm 90$	$274 \pm 14 \pm 18$
	425	[385, 440]	3108	3010± 50± 80	$198 \pm 23 \pm 1$
	450	[410, 465]	2281	$2230 \pm 40 \pm 60$	$154 \pm 17 \pm 27$
	475	[430, 490]	1906	$1920 \pm 40 \pm 60$	$116 \pm 12 \pm 8$
	500	[455, 515]	1495	$1513 \pm 35 \pm 49$	$94 \pm 10 \pm 8$
	525	[475, 540]	1318	$1327 \pm 33 \pm 46$	$71 \pm 7 \pm 4$
	550	[500, 565]	1050	1048± 29± 39	$48.5\pm 5.4\pm 2.2$
	575	[520, 590]	924	912± 27± 36	$44 \pm 4 \pm 4$
	600	[545, 620]	745	744± 25± 31	36.9± 1.6± 2.3
	625	[565, 645]	645	$626\pm 22\pm 28$	$30.3\pm 2.8\pm 3.4$
	650	[585, 670]	536	$554\pm 21\pm 26$	$23.3\pm 2.1\pm 1.9$
	675	[610, 695]	438	$473 \pm 19 \pm 24$	$20.3 \pm 1.6 \pm 0.9$
	700	[630, 720]	404	$422\pm 18\pm 22$	$15.4 \pm 1.2 \pm 0.9$
	725	[655, 745]	341	$335 \pm 16 \pm 18$	$13.6 \pm 1.0 \pm 0.9$
	750	[675, 770]	306	$310\pm 16\pm 18$	$12.4 \pm 0.9 \pm 0.9$
	775	[700, 795]	265	$243 \pm 14 \pm 14$	$9.7\pm 0.7\pm 0.7$
	800	[720, 820]	238	$205\pm 12\pm 13$	$8.5\pm 0.6\pm 0.6$

b-tagged	$m_{\tilde{t}}$ [GeV]	Window [GeV]	N _{Data}	$N_{\rm Bkg}$ (± stat. ± syst.)	N_{Sig} (± stat. ± syst.)
	100	[100, 110]	256	$285 \pm 18 \pm 51$	$308 \pm 18 \pm 52$
	125	[120, 135]	803	798 ±28 ±107	1090 ±40 ±140
	150	[140, 160]	809	789 ±23 ±132	1510 ±40 ±130
	175	[165, 185]	544	$555 \pm 16 \pm 47$	1300 ±40 ±140
	200	[185, 210]	592	$554 \pm 13 \pm 47$	1220 ±40 ±110
	225	[210, 235]	414	436 ±11 ± 35	$893 \pm 28 \pm 90$
	250	[230, 260]	416	$385 \pm 10 \pm 32$	750 ±60 ±120
	275	[255, 285]	302	$283 \pm 8 \pm 24$	$480 \pm 50 \pm 60$
	300	[275, 310]	242	$250 \pm 8 \pm 23$	$390 \pm 40 \pm 50$
	325	[300, 335]	181	$179 \pm 6 \pm 17$	$273 \pm 33 \pm 34$
	350	[320, 365]	169	$161 \pm 6 \pm 16$	$225 \pm 25 \pm 20$
	375	[345, 390]	110	$111 \pm 5 \pm 12$	$147 \pm 16 \pm 22$
	400	[365, 415]	80	$96 \pm 4 \pm 11$	$114 \pm 9 \pm 12$
	425	[385, 440]	85	$79 \pm 4 \pm 10$	$76 \pm 14 \pm 11$
	450	[410, 465]	71	54.2± 3.0± 7.1	$48 \pm 9 \pm 10$
	475	[430, 490]	67	$46.8 \pm 2.7 \pm 6.5$	$40 \pm 7 \pm 5$
	500	[455, 515]	38	$35.8\pm 2.3\pm 5.3$	$26 \pm 5 \pm 5$
	525	[475, 540]	31	$35.1\pm 2.3\pm 5.5$	$21.7 \pm 3.9 \pm 2.8$
	550	[500, 565]	20	$30.2\pm 2.1\pm 5.0$	$12.4\pm 2.5\pm 2.3$
	575	[520, 590]	14	$26.3\pm 2.0\pm 4.6$	$17.5 \pm 2.7 \pm 3.5$
	600	[545, 620]	14	19.5± 1.6± 3.5	$11.4 \pm 0.9 \pm 1.5$
	625	[565, 645]	15	$15.8 \pm 1.4 \pm 3.0$	$9.3 \pm 1.5 \pm 1.4$
	650	[585, 670]	14	$14.6 \pm 1.3 \pm 2.9$	$6.9 \pm 1.2 \pm 1.1$
	675	[610, 695]	13	13.6± 1.3± 2.8	$5.5\pm 0.8\pm 0.6$
	700	[630, 720]	6	$12.1 \pm 1.2 \pm 2.6$	$4.3\pm 0.6\pm 0.5$
	725	[655, 745]	5	9.9± 1.1± 2.2	$4.4\pm 0.6\pm 0.8$
	750	[675, 770]	4	8.4± 0.1± 1.9	$3.4\pm 0.5\pm 0.5$
	775	[700, 795]	8	$6.9\pm 0.9\pm 1.6$	$2.4\pm 0.3\pm 0.5$
	800	[720, 820]	7	$5.3 \pm 0.7 \pm 1.3$	$1.7\pm 0.3\pm 0.2$

Light stops and natural supersymmetry

Supersymmetry: additional fermion-boson symmetry

Q|boson >= |fermion >

Q|fermion >= |boson >

→ New quantum number **R-parity** +1 (-1) for SM (SUSY) particles

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2}\Lambda_{\rm UV}^2 + \frac{\lambda_s}{16\pi^2}\Lambda_{\rm UV}^2 + \dots$$

Require low fine tuning in the MSSM:

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

- Stop and gluino masses correct $m_{H_u}^2$
- Higgsino masses controlled by μ

→ Stops expected to be light