

Global fits with master pMSSMII & Sub-GUT MSSM in light of I3 TeV LHC data

Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data

E. Bagnaschi^a, K. Sakurai^b, M. Borsato^c, O. Buchmueller^d, M. Citron^d, J. C. Costa^d, A. De Roeck^e, M.J. Dolan^f, J.R. Ellis^g, H. Flächer^h, S. Heinemeyerⁱ, M. Lucio^c, D. Martínez Santos^c, K.A. Olive^j, A. Richards^d, V.C. Spanos^k, I. Suárez Fernández^c, G. Weiglein^a Likelihood Analysis of the Sub-GUT MSSM in Light of LHC 13-TeV Data

 $\begin{array}{l} \textbf{J.C. Costa^{a}, E. Bagnaschi^{b}, K. Sakurai^{c}, M. Borsato^{d}, O. Buchmueller^{a} M. Citron^{a}, \\ \textbf{A. De Roeck^{e}, M.J. Dolan^{f}, J.R. Ellis^{g}, H. Flächer^{h}, S. Heinemeyer^{i}, M. Lucio^{d}, \\ \textbf{D. Martínez Santos}^{d}, K.A. Olive^{j}, \textbf{A. Richards}^{a}, \textbf{G. Weiglein}^{b} \end{array}$

Henning Flächer H.H. Wills Physics Laboratory University of Bristol

On behalf of the MasterCode collaboration

Overview

- As we know the Standard Model has several shortcomings, several of which are addressed by Supersymmetry
 - hierarchy problem, gauge unification and dark matter
- Whatever extension to SM we propose, we need to make sure this model is in agreement with existing measurements
 - and hopefully can describe some of the tantalizing deviations we see in selected measurements (think g-2)

- Aim to confront theory models with as many experimental measurements as possible
- Use state of the art calculations of physical observables
- Explore/Scan parameter space of models with multinest algorithm
 - O(10⁸⁻10⁹) points per model
- Carry our frequentist interpretation by calculating an overall χ^2 and relative $\Delta\chi^2$
- Fit model parameters in different MSSM scenarios
 - Explore sensitivity of different observables to parameter space
 - Make predictions for observables

Experimental Constraints

MasteRcope

Global analyses of experimental data in constrained versions of the Minimal Supersymmetric Standard Model (MSSM)

Experimental Constraints

	Observable	Source	Constraint				
		Th./Ex.					
LHC	$\rightarrow \ \ \mathbf{m_t} \ [\mathrm{GeV}]$	[39]	173.34 ± 0.76		$M_W [\text{GeV}]$	[31] / [42,43]	$80.379\pm0.012\pm0.010_{\rm MSSM}$
ſ	$\Delta \alpha_{\rm had}^{(5)}(M_Z)$	[40]	0.02771 ± 0.00011		, , , , , , , , , , , , , , , , ,	[46-48]	2D likelihood. MFV
	$M_Z [GeV]$	[41,42]	91.1875 ± 0.0021		$\frac{\tau(B \rightarrow \mu^+ \mu^-)}{\tau(B \rightarrow \mu^+ \mu^-)}$	[48]	$204 \pm 0.44(\text{stat}) \pm 0.05(\text{syst})$ ns
	$\Gamma_Z [\text{GeV}]$	[43] / [41,42]	$2.4952\pm0.0023\pm0.001_{\rm SUSY}$		$\frac{P(D_s \rightarrow \mu \ \mu)}{DD^{EXP/SM}}$		2.04 ± 0.047 + 0.000 (3)30.7 ps
	$\sigma_{ m had}^0 \; [m nb]$	[43] / [41,42]	41.540 ± 0.037		$\frac{BR_{b\to s\gamma}}{EVP/SM}$	[49]/ [50]	$0.988 \pm 0.045_{\text{EXP}} \pm 0.008_{\text{TH,SM}} \pm 0.050_{\text{TH,SUSY}}$
	R_l	[43] / [41,42]	20.767 ± 0.025		$\frac{BR_{B \to \tau \nu}}{D}$	[50, 51]	$0.883 \pm 0.158_{\mathrm{EXP}} \pm 0.096_{\mathrm{SM}}$
	$A_{\rm FB}(\ell)$	[43] / [41,42]	0.01714 ± 0.00095	B-Factories	$BR_{B\to X_s\ell\ell}^{\rm EXP/SM}$	[52]/[50]	$0.966\pm 0.278_{\rm EXP}\pm 0.037_{\rm SM}$
	$A_{\ell}(P_{\tau})$	[43] / [41,42]	0.1465 ± 0.0032		$\Delta M_{B_s}^{\rm EXP/SM}$	[34, 53] / [50]	$0.968\pm 0.001_{\rm EXP}\pm 0.078_{\rm SM}$
	R _b	[43] / [41, 42]	0.21629 ± 0.00066	Tale D decays	$\frac{\Delta M_{B_s}^{\text{EXP/SM}}}{E_{S}}$	[34, 53] / [50]	$1.007 \pm 0.004_{\rm EXP} \pm 0.116_{\rm SM}$
EWPO	Rc	[43] / [41,42]	0.1721 ± 0.0030	🔄 🛛 & mixing 📘	$\Delta M_{B_d}^{\text{EXP/SM}}$		
	$A_{ m FB}(b)$	[43] / [41,42]	0.0992 ± 0.0016		$BR_{K \to \mu\nu}^{\text{LAP/SM}}$	[34, 54] / [55]	$1.0005 \pm 0.0017_{\rm EXP} \pm 0.0093_{\rm TH}$
	$A_{\rm FB}(c)$	[43] / [41,42]	0.0707 ± 0.0035		$BR_{K \to \pi \nu \bar{\nu}}^{\text{EXP/SM}}$	[56]/ [57]	$2.01 \pm 1.30_{\rm EXP} \pm 0.18_{\rm SM}$
	A_b	[43] / [41, 42]	0.923 ± 0.020	Direct [σ_p^{SI}	[3,4,6]	Combined likelihood in the $(m_{\tilde{\chi}^0_r}, \sigma_p^{SI})$ plane
	Ac	[43] / [41, 42]	0.670 ± 0.027	Detection	σ_n^{SD}	[5]	Likelihood in the $(m_{z0}, \sigma_{z}^{sD})$ plane
	$A_{\rm LR}^e$	[43] / [41,42]	0.1513 ± 0.0021		$\begin{array}{c} P \\ \hline \\$	[11,10]	(χ_1, μ, χ_2)
	$\sin^2 heta_{ m w}^\ell(Q_{ m fb})$	[43] / [41,42]	0.2324 ± 0.0012		$g \rightarrow qq\chi_1^\circ, bb\chi_1^\circ, tt\chi_1^\circ$	[11, 12]	Combined likelihood in the $(m_{\tilde{g}}, m_{\tilde{\chi}_1^0})$ plane
LHC 🕻	$M_W \; [\text{GeV}]$	[43] / [41,42]	$80.385\pm0.015\pm0.010_{\rm SUSY}$	LHC 13TeV	$\tilde{q} \rightarrow q \tilde{\chi}_1^0$	[11]	Likelihood in the $(m_{\tilde{q}}, m_{\tilde{\chi}_1^0})$ plane
BNL	$a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}}$	[44] / [45]	$(30.2\pm8.8\pm2.0_{\rm SUSY})\times10^{-10}$	coarchoc	$\tilde{b} \rightarrow b \tilde{\chi}_1^0$	[11]	Likelihood in the $(m_{\tilde{b}}, m_{\tilde{\chi}_1^0})$, plane
LHC	$\rightarrow ~ M_h ~ [{\rm GeV}]$	[46,47] / [48]	$125.09 \pm 0.24 \pm 1.5_{\rm SUSY}$	Searches	$\tilde{t}_1 \to t \tilde{\chi}_1^0, c \tilde{\chi}_1^0, b \tilde{\chi}_1^{\pm}$	[11]	Likelihood in the $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0})$, plane
_	$ ightarrow \Delta \epsilon_K^{ m EXP/SM}$	[54,58] / [40]	$1.14\pm0.10_{\rm EXP+TH}$	👕 gluinos, 🕇	$\tilde{\chi}_1^{\pm} \to \nu \ell^{\pm} \tilde{\chi}_1^0, \nu \tau^{\pm} \tilde{\chi}_1^0, W^{\pm} \tilde{\chi}_1^0$	[13]	Likelihood in the $(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0})$ plane
Planck-($\rightarrow ~~\Omega_{CDM}h^2$	[59,60]/ [28]	$0.1186 \pm 0.0020_{\rm EXP} \pm 0.0024_{\rm TH}$	squarks.	$\tilde{\chi}_2^0 \to \ell^+ \ell^- \tilde{\chi}_1^0, \tau^+ \tau^- \tilde{\chi}_1^0, Z \tilde{\chi}_1^0$	[13]	Likelihood in the $(m_{\tilde{\chi}^0_2}, m_{\tilde{\chi}^0_1})$ plane
					Heavy stable charged particles	[58]	Fast simulation based on [58, 59]
				charginos	$H/A \to \tau^+ \tau^-$	[60-63]	Likelihood in the $(M_A, \tan\beta)$ plane

- + constraints from HiggsSignals for h125 properties and
- HiggsBounds for heavy MSSM Higgs boson searches

Mas/Tercore

University of BRISTOL

Models investigated

- The general MSSM has > 100 free parameters (masses, mixing angles, etc.)
 - Impossible to all leave free and constrain parameter space, need to make a choice
- pMSSM11 2x10⁹ scan points

3 gaugino masses : $M_{1,2,3}$, 2 squark masses : $m_{\tilde{q}} \equiv m_{\tilde{q}_1}, m_{\tilde{q}_2}$ $\neq m_{\tilde{q}_3} = m_{\tilde{t}}, m_{\tilde{b}},$ 2 slepton masses : $m_{\tilde{\ell}} \equiv m_{\tilde{\ell}_1} = m_{\tilde{\ell}_2} = m_{\tilde{e}_1} m_{\tilde{\mu}}$ $\neq m_{\ell_3} = m_{\tilde{\tau}},$ 1 trilinear coupling : A, Higgs mixing parameter : μ , pseudoscalar Higgs mass : M_A , ratio of vevs : $\tan \beta$,

- 112x10⁶ scan points Sub-GUT MSSM
 - Universality of SUSY breaking parameters not at GUT scale but some lower scale M_{in}
 - Study Sub-GUT generalization of **CMSSM**
 - Free parameters:
 - M_{in}
 - Common scalar mass: m₀
 - Common gaugino mass: $m_{1/2}$
 - Common trilinear mixing parameter: A
 - Ratio of MSSM Higgs vev's: tan β
 - 00458 assume Higgs mixing parameter $\boldsymbol{\mu}$ (motivated by g-2)

arXiv:17

- rapid annihilation via the H/A bosons becomes important for lower m1/2, often hybridized with other mechanisms including stop and stau coannihilation.
- Smaller regions with $m_{1/2} \sim 1.5$ to 3 TeV where stop coannihilation and focus-point mechanisms are dominant.

 $M_{in} < 105 \text{ GeV}$ are

strongly disfavoured.

BRISTOL Chargino and stau lifetimes – Sub-GUT

Lifetimes of 10's of seconds allowed for stau

4000

1000

2000

 $m_{\tilde{\tau}_1}$ [GeV]

3000

Mass Spectra

- Sub-GUTmodel:
- Very heavy sparticle spectrum
- Neutralinos/ charginos 1-1.5 TeV
- Higgs sector at 2 TeV
- Sleptons and squarks at 1.5-2 TeV

DM constraints – Sub-GUT

Spin-independent

University of BRISTOL

Impact of g-2 – pMSSM11

• pMSSM11

 Lightest chargino vs neutralino mass

 Likelihood fcnt for lightest neutralino and chargino mass

Mas Tercore

Mass Spectra – pMSSM11

University of BRISTOL

Mas Tercone,

DM constraints - pMSSM11

Spin-independent

Spin-dependent

- Sub-GUT model
- Very heavy sparticle spectrum
 - Neutralinos/charginos 1-1.5 TeV
 - Higgs sector at 2 TeV
 - Sleptons and squarks at 1.5-2 TeV
- Compared to best fits with $M_{in} = M_{GUT}$, χ^2 reduced by $\Delta\chi^2 \sim 2$ in the sub-GUT model
- sub-GUT model is able to provide a better fit to the measured value of $BR(B_{s,d} \rightarrow \mu^+\mu^-)$ than in the CMSSM

- pMSSM11 scan
 - freedom for $m_{\tilde{\ell}} \neq m_{\tilde{\tau}}$ plays important role for allowed parameter range
 - Main mechanisms for bringing DM density in the right range are chargino coannihilation, slepton coannihilation and rapid annihilation via H/A funnels
 - LHC 13-TeV constraints have largest impact on stronglyinteracting sparticles
 - (g 2)_µ most important for charged slep- ton masses and electroweakinos

ann.

 $\tilde{\chi}_1^{\pm}$ coann.

gluino coann.

 \sim DMJSHINW/OLHCI3 : best fit, 1σ , 2σ

slep coann

DM mechanisms:

squark coann.

To satisfy cosmological DM density constraint requires, in general, specific relations between sparticle masses that suppress the relic density via coannihilation effects and/or rapid annihilations through direct channel resonances.

Define indicative measures to highlight different DM mechanisms in the preferred regions of the fit:

$\left(\frac{M_{\tilde{\tau}}}{m_{\chi_1^0}} - 1\right) < 0.15$	Stau coannihilation	$\left(\frac{M_{\tilde{l}}}{m_{\chi_1^0}}-1\right)<0.15$	Slepton Co-annihilatior			
$\left(\frac{M_{\chi_1^{\pm}}}{m_{\chi_1^0}} - 1\right) < 0.25$	Chargino Co-annihilation	$\left(\frac{M_{\tilde{g}}}{m_{\chi_1^0}} - 1\right) < 0.25$	Gluino Co-annihilatior			
$\left(\frac{M_{\tilde{q}}}{m_{\chi_1^0}} - 1\right) < 0.20$	Squark Co-annihilation	Hybrid In addition to regions where	regions: the `primary' only one of the			
$\left \frac{M_B}{m_{\chi^0_1}} - 2\right < 0.4$	B = h, Z or H/A funnel	conditions is s can also be `h where mor	conditions is satisfied, there can also be `hybrid' regions where more than one			
$\left \frac{\mu}{m_{\chi_1^0}}-1\right <0.30$	Higgsino enriche "focus-point" like	ed present, these using combi	e are indicated ned colours.			

See also arXiv:1508.01173 for further details

B_{s.d} -> mu+mu-

