

Reconstruction techniques in supersymmetry searches in the ATLAS experiment

Kouta Onogi (Nagoya Univ.), on behalf of the ATLAS Collaboration

25th international conference on supersymmetry and the unification of fundamental interactions (SUSY17)

December 14, 2017

Introduction

Although we have searched for SUSY particles_q for wide theoretical parameter regions (up to 2 TeV^p for strong searches), they are not discovered vet.
Experimentall^q challenging signature becomes more important for the W[±] discovery.

- Objects: high-pT jets and high ET
- Precise low-statistics background estimation

- Objects: low-p_T lepton/jets and low E_T^{miss}
- ISR to boost the SUSY particles

Overview of reconstruction techniques

1. Lepton reconstruction efficiencies

▶ extension to low-p⊤ leptons (muon: 4 GeV, electron: 4.5 GeV) New!

2. The reclustered jet reconstructions New!

variable-R jet reconstruction
New!

3. Precise background estimations

• Z($\rightarrow \nu \nu$)+jets and fake lepton/E^{miss}_T

4. Specific signal topologies

- high-pT b-tagging
- signal + ISR topology

Lepton reconstruction efficiencies [ATLAS-CONF-2016-024 [arXiv:1603.05598]

- Muon (Electron) reconstruction efficiencies and correction factors are estimated for leptons in $J/\Psi \rightarrow \mu \mu$ (ee) and $Z \rightarrow \mu \mu$ (ee) events as a function of p_T (E_T) in a range **p_T > 4 GeV (E_T > 4.5 GeV)**.
- Muon efficiency is higher than 95% in each η regions except for the regions with detector gaps and/or services.

(Electron efficiency is higher than 75% except for the regions with calorimeter gaps.)

Examples: Muon reconstruction efficiencies

December 2017

Jet reclustering algorithm [arXiv:1407.2922]

- Fixed large radius (R) jets (R=1.0) have good reconstruction performances for high-p_T jets, but they may not be optimal for each analysis.
- New reclustered large-R jets (R=1.0) are developed by the new reclustering algorithm with small radius jets (r=0.3, 0.4, etc).
 - The calibration is not necessary because using the calibrated small-R jets.
 - The calibration for small-R jets contains the **pile-up suppression**.
 - The reclustered large-R jets have 0.3 qN(2 GeV) 0.25 0.3 PYTHIA smaller energy-scale uncertainty (~1%). √s = 14 TeV, m_w = 0.8 TeV anti-k, R = 1.0, 200 GeV < p_{_{T}}^{jet} < 300 GeV √s = 85 Fe& FeXT R)/AT 211A-2tt,-mtt,=m5,=fle5/ TeV 0.2 NPV = 80 Azimuthal Angle [rad] Azimuthal Angle [rad] Azimuthal Angle [rad] Azimuthal Angle [rad] $\textbf{W'} \rightarrow \textbf{WZ} \rightarrow \textbf{qqll}$ 0.15 Dijets Stable Truth Particles 0.1 RT r = 0.3 anti-k, Inside R=0.3 Jets $f_{cut} = 0.1$ ጚአ 0.05 W mass R=1.0 and R=1.0 jets r=0.3 jets -2 50 150 100 200 -2 0 -2 0 2 -2 0 2 Jet Mass [GeV] RapRepidity Rapidity **Fixed large-R jets Reclustered large-R jets** W/dijets mass reconstructions

December 2017

Variable-R jets reconstruction [arXiv:1711.11520]

- The reclustering algorithm with small-R jets can reconstruct variable-R jets.
- They are useful for the reconstruction of the top-quark or W boson with hadronic decay.

Reconstruction method

- All small-R jets (r=0.4) are clustered with an initial large-R parameter R₀, e.g. R₀ = 3.0.
- The parameter R of each large-R jet is then iteratively reduced to an optimal R,

 $R(p_{\rm T}) = 2 \times m/p_{\rm T}$

(p⊤: p⊤ of the large-R jet, m: candidate's mass)

stop1L, $ilde{t}_1 o t ilde{\chi}_1^0$

6

Events

$Z(\rightarrow \nu \nu)$ +jets background estimation

 The dominant background in Signal Region (SR) is estimated by using Control Region (CR) :

$$N_{\text{Data,SR}} = N_{\text{MC,SR}} imes \frac{N_{\text{Data,CR}}}{N_{\text{MC,CR}}}$$

= scale factor (SF)

- $Rs = 0 \qquad Nr = 1$
- $Z(\rightarrow \nu\nu)$ +jets background is dominant for squark/gluino pair production in all jets final state [ATLAS-CONF-2017-022].
- The modeling uncertainty of Z ($\rightarrow \nu \nu$) + jets is large. \rightarrow data-driven method with γ +jets is used.
- γ +jets corrected to model Z+jets
 - → Knowing corrections to high accuracy more important than accuracy on γ+jets or Z+jets alone

The maximum contribution to the overall background uncertainty is a few %.

December 2017

Fake lepton/E^{miss} background estimations

Fake lepton background

- Fake lepton background arises from mis-identified jets.
- Fake lepton modeling at very low-p_T, which is new, challenging, and important for the compressed SUSY scenarios with soft leptons.
- The quantitative estimation of the fake lepton is obtained by data-driven fake factor method.

Fake E^{miss} backgrounds

- Fake E_T^{miss} backgrounds arise from
 - mis-measurements of jets or leptons
 - neutrinos from b- and c- semi-leptonic decays
- Fake E_T^{miss} backgrounds due to
 - Z/γ^* + jets: in the search for electroweak and gluino pair productions in the two leptons final state $\rightarrow \gamma$ +jets reweighting method
 - QCD/multi-jets: in the search for squark/gluino pair production in the all jets final state → jets smearing method

Techniques for fake E^{miss} background reconstructions

*Y***+jets reweighting method** [ATLAS-CONF-2017-039]

- The γ+jets events are used to produce a E^{miss}_T template in Z+jets.
- The difference of the p⊤ distribution and resolution between the lepton and the photon is corrected.
 - The p_T distribution of the smeared γ is reweighted to match the p_T distribution of Z reconstructed by ee/μμ.

Jets smearing method [arXiv:12

- Smeared events are generated by m_{i}^{S} m_{i}^{S}
- The R(p_T) of jets is initially estimated from MC, and then modified to agree with data in dedicated samples.
- Final smeared events are used to estimate the distributions of variables defining the CRs and SRs. met(incl.) [GeV]

squarks/gluino OL

Decem	ber	20)17

>	Eiliiii	
сл Сл	ATI AS Preliminary	 Data 2015 and 2016
0	ATEROTIONINALY	CM Total

Specific signal topology with high-pt b-tagging [arXiv:1708.09266]

- In case of the search for direct sbottom pair production, dedicated signal region with high-p_T b-jets is defined for zero-lepton channel.
 - The events with high-pT b-jets (v1, v2) is reconstructed by using the cotransverse mass (mcT) variable which is the mass of pair-produced semi-invisibly decaying heavy particles:

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\vec{p}_{\rm T}(v_1) - \vec{p}_{\rm T}(v_2)]^2$$

Specific signal topology (signal + ISR) for signals with compressed mass spectra

Summary

- We have searched for the SUSY particles for wide theoretical parameter regions, but they have not yet been discovered.
- To achieve the discovery of the SUSY particles,
 - The data driven method to extract number of the dominant background such as Z+jets event can provide accurate analyses.
 - Reconstruction techniques have been improved and wider momentum region of the leptons and jets is covered.
 - With the analyses for the high-p⊤ b-tagging, sbottom searches can be covered until high mass region.
 - With the analyses for the SUSY+ISR event topology, SUSY with compressed mass spectra can be searched for.

We will keep developing new "reconstruction techniques" to discover the SUSY particles!

December 2017

Search for sbottom/stop pair production in events with (high-pt) b-tagged jets and E_T^{miss}

References:

- Search for SUSY at13 TeV, arXiv:1708.09266v1 [link]
- Search for SUSY at 8 TeV, arXiv:1308.2631v1 [link]
- Internal Note: ATL-COM-PHYS-2016-1697 [link for only ATLAS collaboration]
- Cotransverse mass, arXiv:0802.2879v3 [link]

Discriminating variables for high pr b-tagging

- Cotransverse mass (m_{CT}) is used to measure the mass of pairproduced semi-invisibly decaying heavy particles.
- Two visible particles are b-quarks (v₁, v₂), and two invisible particles are $\tilde{\chi}_1^0$ (X₁, X₂), m_{CT} can be defined as:

 $m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\vec{p}_{\rm T}(v_1) - \vec{p}_{\rm T}(v_2)]^2, \ m_{\rm CT}^{\rm max} = \frac{m_i^2 - m_X^2}{m_i}.$

($m_{\rm CT}^{\rm max}$ is the kinematic endpoint, "i" is initially pair-produced particle.)

• \mathcal{A} is the pT asymmetry of the leading two jets:

$$\mathcal{A} = \frac{p_{\rm T}(j_1) - p_{\rm T}(j_2)}{p_{\rm T}(j_1) + p_{\rm T}(j_2)}.$$

- This variable can discriminate different topologies with two more jets.
 - signal-like: high-ISR + low-2nd jets $\rightarrow A$ tend to be close to one.
 - bkg-like: all jets are comparable $\rightarrow A$ tend to be close to zero.

Studies of re-clustered large-R jets

JES Uncertainty [1407.2922]

 The reclustered large-R jets have smaller jet-energy-scale (JES) uncertainty (~ 1%).

December 2017

Compare W boson masses

Studies of the lepton reconstruction efficiencies

December 2017

Electron efficiency [ATLAS-CONF-2016-024]

Efficiency is higher than 75% except for the regions with calorimeter gaps.

- The lower efficiencies in data than MC arise from the transition radiation tracker condition and mis-modeling of calorimeter shower shapes in detector simulation.
- The plots are showing the $Z \rightarrow$ ee efficiencies in data and MC.

Muon efficiency [arXiv:1603.05598]

• A reconstruction efficiency in different η regions is measured in seven p_T bins (p_T = 4-5, 5-6, 7-8, 8-10,10-12, and 12-15 GeV)

Lepton efficiencies

- Lepton efficiencies studied by using the MCs are estimated for the higgsino and slepton searches.
- Uncertainty band represent the range of efficiencies observed across all signal samples for the given p_T bin.
- The η -dependence is also applied and it is consistent with values of electron and muon estimated in 2015.

December 2017