Alternative angular variables for OCD multijet background event suppression in SUSY searches at the LHC

Tai Sakuma

Henning Flaecher
Dominic Smith ${ }^{1}$
University of Bristol 1also at Vrije Universiteit Brussel

14 December 2017 SUSY 2017, TIFR, Mumbai

䝂道 University of
BRISTOL

Benchmark signal models
2 mass points from T1ttt (GIt) near the exclusion contour of recent results

High jet multiplicity
final state

compressed spectrum

ROC curves

New variables: $\chi_{\text {min }} \hat{\omega}_{\text {min }}$
HT: $H_{\mathrm{T}} \equiv \sum_{i \in \mathrm{jets}}\left|\vec{p}_{\mathrm{T} i}\right| \quad$ МНТ: $\vec{H}_{\mathrm{T}}^{\text {miss }} \equiv-\sum_{i \in \text { jets }} \vec{p}_{\mathrm{T} i}$

Benchmark signal models
2 mass points from T1tttt (GIt) near the exclusion contour of recent results
High jet multiplicity
final state

compressed spectrum
high gluino mass

ROC curves

New variables: $\chi_{\text {min }} \hat{\omega}_{\text {min }}$
HT: $H_{\mathrm{T}} \equiv \sum_{i \in \mathrm{jets}}\left|\vec{p}_{\mathrm{T} i}\right| \quad$ MHT: $\vec{H}_{\mathrm{T}}^{\mathrm{miss}} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i}$

Contents

- QCD events with large MET (MHT)
- Review of $\Delta \varphi_{i}$ cut
- Review of $\Delta \varphi_{\text {min }}^{*}$ cut
- Alternative angle ω_{i}
- New variables
- Performance in simulated events
- Summary
- Backup slides
- simulated event sample
- comparison of Delphes CMS and ATLAS cards

New variables: $\chi_{\text {min }} \hat{\omega}_{\text {min }}$

QCD events with large MET (or MHT)

- Why do OCD events have large MET (or MHT)?

$$
\begin{aligned}
& \vec{H}_{\mathrm{T}}^{\text {miss }} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i} \begin{array}{l}
\text { note: in this talk, I } \\
\text { will mostly use MHT } \\
\text { instead of MET. }
\end{array} \\
& \hline
\end{aligned}
$$

QCD events with large MET (or MHT)

- Why do OCD events have large MET (or MHT)?

1. a jet mismeasurment
2. neutrinos in hadron decays in a jet

$$
\begin{aligned}
& \text { MUT } \\
& \vec{H}_{\mathrm{T}}^{\text {miss }} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i} \begin{array}{l}
\text { note: in this talk, I } \\
\text { will mostly use MHT } \\
\text { instead of MET. }
\end{array}
\end{aligned}
$$

QCD events with large MET (or MHT)

- Why do QCD events have large MET (or MHT)?

1. a jet mismeasurment
2. neutrinos in hadron decays in a jet

1. a jet p_{T} underestimate
(jet p_{T} ranking: high)

2. a jet p_{T} underestimate
(jet p_{T} ranking: low)

$p_{x}-p_{y}$ plane

$$
\begin{aligned}
& \text { MUT } \\
& \vec{H}_{\mathrm{T}}^{\text {miss }} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i} \begin{array}{l}
\text { note: in this talk, I } \\
\text { will mostly use MHT } \\
\text { instead of MET. }
\end{array}
\end{aligned}
$$

QCD events with large MET (or MHT)

- Why do QCD events have large MET (or MHT)?

1. a jet mismeasurment
2. neutrinos in hadron decays in a jet

$$
\begin{aligned}
& \text { MHT } \\
& \vec{H}_{\mathrm{T}}^{\text {miss }} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i} \begin{array}{l}
\text { note: in this talk, I } \\
\text { will mostly use MHT } \\
\text { instead of MET. }
\end{array}
\end{aligned}
$$

QCD events with large MET (or MHT)

- Why do QCD events have large MET (or MHT)?

1. a jet mismeasurment
2. neutrinos in hadron decays in a jet

3. a jet p_{T} underestimate
(jet p_{T} ranking: high)

$p_{x}-p_{y}$ plane

4. a jet p_{T} overestimate

- How do you reject these QCD events without much reducing the signal acceptance?
MHT

$$
\vec{H}_{\mathrm{T}}^{\mathrm{miss}} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i}\left|\begin{array}{l}
\text { note: in this talk, I } \\
\text { will mostly use MHT } \\
\text { instead of MET. }
\end{array}\right|
$$

The angle $\Delta \varphi_{i}$

- The angle $\Delta \varphi_{i}$ (delta phi)

$$
\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right)
$$

- widely used to reject QCD events with large MHT (MET) in all-hadronic SUSY searches in CMS and ATLAS

$$
\begin{aligned}
& \text { egg., CMS, PRD96(2017)032003 (MHT), EPJC77(2017)710 } \\
& \text { (MT2), arXiv:1710.11188 (top tag), JHEP10(2017)005 (stop), } \\
& \text { arXiv:1707.07274 (sbottom), arXiv:1709.04896 (higgsino) } \\
& \text { ATLAS, arXiv:1712.02332 (Muff), arXiv:1711.01901 (sb), } \\
& \begin{array}{l}
\text { arXiv:1708.09266 (sbottom), arXiv:1709.04183 (stop), arXiv: } \\
\underline{1710.11412 ~(W I M P) ~}
\end{array} \\
& \hline
\end{aligned}
$$

jet $i \quad$ jet with i-th highest p_{T}
MUT $\quad \vec{H}_{\mathrm{T}}^{\mathrm{miss}} \equiv-\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T} i}$
note: $\Delta \varphi_{i}$ is more commonly defined with MET rather than with MHT. In this talk, however, $\Delta \varphi_{i}$ is defined with MHT unless stated otherwise.

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4$ [arXiv:1711.01900 (atLAS 3b)] ($\Delta \varphi_{i}$ defined with MET)

$$
\Delta \varphi_{1} \geq 0.5, \Delta \varphi_{2} \geq 0.5, \Delta \varphi_{3} \geq 0.3, \Delta \varphi_{4} \geq 0.3 \quad[\text { [PRD96(2017)032003 (CMS MHT)] }
$$

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4 \quad$ [arXiv:1711.01901 (ATLAS Bb)] ($\Delta \varphi_{i}$ defined with MET)

$$
\Delta \varphi_{1} \geq 0.5, \Delta \varphi_{2} \geq 0.5, \Delta \varphi_{3} \geq 0.3, \Delta \varphi_{4} \geq 0.3 \quad[\text { PRD96(2017)032003 (MS MHT)] }
$$

OCD

$\Delta \varphi_{\mathrm{i}}$ of the jet whose p_{T} is underestimated is narrow

none of $\Delta \varphi_{\mathrm{i}}$ is
necessarily narrow

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4$

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4$

1. a jet p_{T} underestimate
(jet p_{T} ranking: high)
2. a jet p_{T} underestimate
(jet p_{T} ranking: low)

3. a jet p_{T} overestimate

QCD

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4$

X rejected
selected

1. a jet p_{T} underestimate
(jet p_{T} ranking: high)

2. a jet p_{T} underestimate (jet p_{T} ranking: low)

The $\Delta \varphi_{i}$ cut

- Typical requirement: $\Delta \varphi_{i}$ of a few highest- p_{T} jets in the event be wider than certain angles
- e.g., $\Delta \varphi_{\min 4} \equiv \min _{i \in\{1, \cdots, 4\}} \Delta \varphi_{i} \geq 0.4$

2. a jet p_{T} underestimate (jet p_{T} ranking: low)

OCD

SUSY
$\begin{array}{l}\text { Jets receiving the } \\ \text { recoil of USPs often } \\ \text { have wide } \Delta \varphi_{i}\end{array}$

The angle $\Delta \varphi_{i}^{*}$

- The angle $\Delta \varphi_{i}^{*}$ (delta phi star)

$$
\Delta \varphi_{i}^{*} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}+\vec{p}_{\mathrm{T} i}\right)
$$

The azimuthal angle between a jet i and MHT calculated without the jet

- first appeared before Run 1 in [PAS-SUS-09-001, PAS-SUS-10-001 (CMS)]
- used, in early Run 1 analysis, to identify large MHT caused by masked region of calorimeter [PLB698(2011)196 (CMS α_{T})]
- used, in recent Run 2 results, to suppress

MHT w/o jet i

$$
\begin{aligned}
-\sum_{\substack{j \in \mathrm{jets} \\
j \neq i}} \vec{p}_{\mathrm{T} j} & =-\sum_{j \in \mathrm{jets}} \vec{p}_{\mathrm{T} j}+\vec{p}_{\mathrm{T} i} \\
& =\vec{H}_{\mathrm{T}}^{\mathrm{miss}}+\vec{p}_{\mathrm{T} i}
\end{aligned}
$$

QCD background to a negligible level [EPJC77(2017)294, PAS-SUS-16-016 (CMS α_{T})]

The angular variable $\Delta \varphi_{\min }^{*}$

- The minimum $\Delta \varphi^{*}$ i of all jets in the event

$$
\Delta \varphi_{\min }^{*} \equiv \min _{i \in \mathrm{jets}} \Delta \varphi_{i}^{*}
$$

- The $\Delta \varphi_{\text {min }}^{*}$ cut

$$
\Delta \varphi_{\min }^{*} \geq \gamma_{0}
$$

$$
\text { e.g., } \gamma_{0}=0.5\left[\underline{E P J C 77(2017) 294}, \text { PAS-SUS-16-016 }\left(\mathrm{CMS} \alpha_{\mathrm{T}}\right)\right]
$$

- can suppress QCD background to a negligible level while keeping the signal acceptance wide enough to carry out the search
- but does largely reduce the signal acceptance

Event selection	Benchmark model ($\left.m_{\text {SUSY }}, m_{\text {LSP }}\right)$					
	$\begin{gathered} \hline \text { T1bbbb } \\ (1500,100) \end{gathered}$	$\begin{gathered} \text { T1bbbb } \\ (1000,800) \end{gathered}$	$\begin{gathered} \text { T1tttt } \\ (1300,100) \end{gathered}$	$\begin{gathered} \text { T1tttt } \\ (800,400) \end{gathered}$	$\begin{gathered} \text { T1ttbb } \\ (1300,100) \end{gathered}$	$\begin{gathered} \text { T1ttbb } \\ (1000,700) \end{gathered}$
Before selection	100	100	100	100	100	100
Event veto for muons and electrons	99	98	41	42	61	64
Event veto for single isolated tracks	94	91	31	32	51	54
Event veto for photons	93	91	30	32	50	54
Event veto for forward jets ($\|\eta\|>3.0$)	82	79	27	27	44	47
$n_{\text {jet }} \geq 2$	82	78	27	27	44	47
$p_{\mathrm{T}}^{\mathrm{j}_{1}}>100 \mathrm{GeV}$	82	69	27	25	44	43
$\left\|\eta^{\mathrm{j}_{1}}\right\|<2.5$	82	68	27	25	44	42
$H_{\mathrm{T}}>200 \mathrm{GeV}$	82	66	27	25	44	42
$H_{\mathrm{T}}^{\text {miss }}>130 \mathrm{GeV}$	79	48	25	15	41	32
$H_{\mathrm{T}}^{\text {miss }} / E_{\mathrm{T}}^{\text {miss }}<1.25$	77	43	24	11	38	26
H_{T}-dependent α_{T} requirements $\left(H_{\mathrm{T}}<800 \mathrm{GeV}\right)$	77	29	24	8.3	38	19
$\Delta \phi_{\text {min }}^{*}>0.5$	23	17	5.6	1.3	9.5	8.8
Four most sensitive $n_{\text {jet }}$ event categories	23	12	5.6	1.3	9.5	7.4

http://cms-results.web.cerr.ch/cms-results/public-results/publications/SUS-15-005/index.html additional table for $\underline{\operatorname{EPJC77}(2017) 294}$ (CMS α_{\top})

The angle $\Delta \varphi_{i}^{*}$

The angle $\Delta \varphi_{i}^{*}$

$$
\Delta \varphi_{i}^{*}=\Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\text {miss }}+\vec{p}_{\mathrm{T} i}\right)
$$

with the law of cosine

$$
\cos \Delta \varphi_{i}^{*}=\frac{\vec{p}_{\mathrm{T} i} \cdot\left(\vec{H}_{\mathrm{T}}^{\mathrm{miss}}+\vec{p}_{\mathrm{T} i}\right)}{\left|\vec{p}_{\mathrm{T} i}\right|\left|\vec{H}_{\mathrm{T}}^{\text {miss }}+\vec{p}_{\mathrm{T} i}\right|}
$$

which can be written as

$$
\cos \Delta \varphi_{i}^{*}=\frac{f_{i}+\cos \Delta \varphi_{i}}{\sqrt{1+f_{i}^{2}+2 f_{i} \cos \Delta \varphi_{i}}}
$$

$$
f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\text {miss }}}
$$

$\Delta \varphi_{i}^{*}$ is a function of two dimensionless variables $\Delta \varphi_{i}$ and f_{i}

The angle $\Delta \varphi_{i}^{*}$

The angle $\Delta \varphi_{i}^{*}$

$$
\Delta \varphi_{i}^{*}=\Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}+\vec{p}_{\mathrm{T} i}\right)
$$

with the law of cosine

$$
\cos \Delta \varphi_{i}^{*}=\frac{\vec{p}_{\mathrm{T} i} \cdot\left(\vec{H}_{\mathrm{T}}^{\text {miss }}+\vec{p}_{\mathrm{T} i}\right)}{\left|\vec{p}_{\mathrm{T} i}\right|\left|\vec{H}_{\mathrm{T}}^{\text {miss }}+\vec{p}_{\mathrm{T} i}\right|}
$$

which can be written as

$$
\cos \Delta \varphi_{i}^{*}=\frac{f_{i}+\cos \Delta \varphi_{i}}{\sqrt{1+f_{i}^{2}+2 f_{i} \cos \Delta \varphi_{i}}}
$$

The normalized p_{T} plane: the $p_{x}-p_{y}$ plane that is rotated and scaled such that MHT points horizontally to the right with unit length. The plane is flipped if necessary so that $0 \leq \Delta \varphi_{i} \leq \pi$.

$$
f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\mathrm{miss}}}
$$

$\Delta \varphi_{i}^{*}$ is a function of two dimensionless variables $\Delta \varphi_{i}$ and f_{i}
$\overrightarrow{\mathrm{OC}}=\vec{H}_{\mathrm{T}}^{\text {miss }}$ dimensionless variables $\Delta \varphi_{i}$ and f_{i}

$$
\overrightarrow{\mathrm{OA}}=\vec{p}_{\mathrm{T} i}
$$

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi^{*}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

$\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\mathrm{miss}}}$

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi_{i}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

$$
\begin{aligned}
& \text { The } \Delta \varphi^{*}{ }_{\text {min }} \text { cut: } \\
& \Delta \varphi^{*}{ }_{\text {min }} \geq \gamma_{0} \\
& \text { rejects every event with at } \\
& \text { least one jet with } \Delta \varphi^{\star}{ }_{i}<\gamma_{0} \\
& \hline
\end{aligned}
$$

$\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\mathrm{miss}}}$

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi^{*}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

$$
\begin{aligned}
& \text { The } \Delta \varphi_{\text {min }}^{*} \text { cut: } \\
& \qquad \Delta \varphi_{\text {min }}^{*} \geq \gamma_{0} \\
& \text { rejects every event with at } \\
& \text { least one jet with } \Delta \varphi^{*}{ }_{i}<\gamma_{0}
\end{aligned}
$$

large $\mathrm{f}_{i} \mid$ wide $\Delta \varphi_{i} \mid$ narrow $\Delta \varphi_{i}$
The $\Delta \varphi^{*}{ }_{\text {min }}$ cut rejects any event with one jet with large $f_{i}\left(f_{i}\right.$ larger than $\left.1 / \sin \gamma_{0}\right)$

For example, if $\gamma_{0}=0.5$, the $\Delta \varphi^{\star}{ }_{\text {min }}$ cut rejects all events with one jet with p_{t} at least 2.09 times larger than MHT

This feature might appear to needlessly reduce the signal acceptance.

$$
\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\mathrm{miss}}}
$$

Signal events don't normally have a jet with large f_{i}

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi^{*}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

The $\Delta \varphi^{*}{ }_{\text {min }}$ cut:

$$
\Delta \varphi_{\text {min }}^{*} \geq \gamma_{0}
$$

rejects every event with at least one jet with $\Delta \varphi^{*}{ }_{i}<\gamma_{0}$
large f_{i} wide $\Delta \varphi_{i} \mid$ narrow $\Delta \varphi_{i}$
The $\Delta \varphi^{*}{ }_{\text {min }}$ cut rejects any event with one jet with large $f_{i}\left(f_{i}\right.$ larger than $\left.1 / \sin \gamma_{0}\right)$

For example, if $\gamma_{0}=0.5$, the $\Delta \varphi^{\star}{ }_{\text {min }}$ cut rejects all events with one jet with pt_{t} at least 2.09 times larger than MHT

This feature might appear to needlessly reduce the signal acceptance.

On the contrary, this feature effectively reduce OCD events without much reducing the signal acceptance.

$$
\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{Ti}}}{H_{\mathrm{T}}^{\mathrm{miss}}}
$$

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi^{*}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

large f_{i} wide $\Delta \varphi_{i}$ narrow $\Delta \varphi_{i}$

The $\Delta \varphi_{\text {min }}^{*}$ cut rejects QCD events with large MHT caused by jet p_{T} overestimate without needlessly reducing the signal acceptance

OCD X

The jet whose p_{T} is overestimated has $p_{\mathrm{T}}>\mathrm{MHT}$

Jets receiving the recoil of LSPs can have $p_{T}<M H T$

$$
\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\text {miss }}}
$$

The angle $\Delta \varphi_{i}^{*}$
$\Delta \varphi^{*}{ }_{i}$ as function of $\Delta \varphi_{i}$ and f_{i}

$$
\begin{aligned}
& \text { The } \Delta \varphi^{*}{ }_{\text {min }} \text { cut: } \\
& \qquad \Delta \varphi_{\text {min }}^{\star} \geq \gamma_{0} \\
& \text { rejects every event with at } \\
& \text { least one jet with } \Delta \varphi^{\star}{ }_{i}<\gamma_{0}
\end{aligned}
$$

large $f_{i} \mid$ wide $\Delta \varphi_{i}$ narrow $\Delta \varphi_{i}$
By definition, $\Delta \varphi^{\star}{ }_{i} \leq \Delta \varphi_{i}$
The $\Delta \varphi^{*}{ }_{\text {min }}$ cut rejects every event with at least one jet with $\Delta \varphi_{i}<\gamma_{0}$

SUSY X

Here, there is room for improvement

$$
\Delta \varphi_{i} \equiv \Delta \varphi\left(\vec{p}_{\mathrm{T} i}, \vec{H}_{\mathrm{T}}^{\mathrm{miss}}\right) \quad f_{i} \equiv \frac{p_{\mathrm{T} i}}{H_{\mathrm{T}}^{\mathrm{miss}}}
$$

The relation between $\Delta \varphi_{i}$ and f_{i} of the jet whose p_{T} is underestimated

[^0]A large jet p_{T} underestimate

$$
\tan \Delta \varphi_{i}^{*}=\frac{\sin \Delta \varphi_{i}}{f_{i}+\cos \Delta \varphi_{i}}
$$

The normalized $p_{\text {T }}$ plane

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\vec{H}_{\mathrm{T}}^{\text {miss }} \\
& \overrightarrow{\mathrm{OA}}=\vec{p}_{\mathrm{T} i}
\end{aligned}
$$

Alternative angle ω_{i}

$$
\tan \Delta \varphi_{i}^{*}=\frac{\sin \Delta \varphi_{i}}{f_{i}+\cos \Delta \varphi_{i}} \quad \tan \omega_{i}=\frac{\sin \Delta \varphi_{i}}{f_{i}}
$$

The normalized p_{T} plane

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\vec{H}_{\mathrm{T}}^{\text {miss }} \\
& \overrightarrow{\mathrm{OA}}=\vec{p}_{\mathrm{T} i}
\end{aligned}
$$

$\overrightarrow{\mathrm{OD}}$: minimized MHT

Alternative angle ω_{i}

$$
\tan \Delta \varphi_{i}^{*}=\frac{\sin \Delta \varphi_{i}}{f_{i}+\cos \Delta \varphi_{i}} \quad \tan \omega_{i}=\frac{\sin \Delta \varphi_{i}}{f_{i}}
$$

The normalized $p_{\text {T }}$ plane

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\vec{H}_{\mathrm{T}}^{\text {miss }} \\
& \overrightarrow{\mathrm{OA}}=\vec{p}_{\mathrm{T}} \mathrm{l}
\end{aligned}
$$

$\overrightarrow{\mathrm{OD}}$: minimized MHT

Alternative angle ω_{i}

$$
\tan \Delta \varphi_{i}^{*}=\frac{\sin \Delta \varphi_{i}}{f_{i}+\cos \Delta \varphi_{i}}
$$

$$
\tan \omega_{i}=\frac{\sin \Delta \varphi_{i}}{f_{i}}
$$

The normalized p_{T} plane

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\vec{H}_{\mathrm{T}}^{\text {miss }} \\
& \overrightarrow{\mathrm{OA}}=\vec{p}_{\mathrm{T} i}
\end{aligned}
$$

$\overrightarrow{\mathrm{OD}}$: minimized MHT

Alternative angle ω_{i}

The angle ω_{i}

$$
\tan \omega_{i}=\frac{\sin \Delta \varphi_{i}}{f_{i}}
$$

- can be wider than $\Delta \varphi_{i}$
- in the limit $f_{i} \rightarrow 0$, a step function of $\Delta \varphi_{i}$
- ω_{i} can be wider than any acute angle if f_{i} is sufficiently small
- no matter how small f_{i} is, ω_{i} can be narrower than any angle if $\Delta \varphi_{i}$ is sufficiently narrow

SUSY

Alternative angle ω_{i}

The angle ω_{i}

$$
\tan \omega_{i}=\frac{\sin \Delta \varphi_{i}}{f_{i}}
$$

- can be wider than $\Delta \varphi_{i}$
- in the limit $f_{i} \rightarrow 0$, a step function of $\Delta \varphi_{i}$
- ω_{i} can be wider than any acute angle if f_{i} is sufficiently small
- no matter how small f_{i} is, ω_{i} can be narrower than any angle if $\Delta \varphi_{i}$ is sufficiently narrow

SUSY

Variants of ω_{i}-recover the lost advantage

$\hat{\omega}_{i}$
$\tan \hat{\omega}_{i}=\frac{\sin \left(\min \left(\Delta \varphi_{i}, \pi / 2\right)\right)}{f_{i}}$

χ_{i}

$$
\tan \chi_{i}=\frac{\sqrt{1+\left(\min \left(f_{i},-\cos \Delta \varphi_{i}\right)\right)^{2}+2 \min \left(f_{i},-\cos \Delta \varphi_{i}\right) \cos \Delta \varphi_{i}}}{\min \left(f_{i}, \max \left(f_{i}+\cos \Delta \varphi_{i}, 0\right)\right)}
$$

$$
\begin{aligned}
& \text { The same as } \omega_{i} \\
& \text { for } \Delta \varphi_{i} \leq \pi / 2
\end{aligned}
$$

The same as $\Delta \varphi^{\star}{ }_{i}$ for $\Delta \varphi_{i}>\pi / 2$ except χ_{i} is capped at $\pi / 2$

Event distributions

EWK: tt+jets, W+jets, $Z(\rightarrow v v)+$ jets

EWK: tt+jets, W+jets, Z($\rightarrow v v$)+jets

maxima at larger
values for signal events

"ideal" distributions of $\Delta \varphi_{i}$
-exponential decrease for
OCD, flat for signal events

Against OCD multijet events

Against OCD multijet events

Against the total SM events

 (OCD multijets, tt+jets, W+jets, Z $\rightarrow v v$)+jets)

- We have reviewed the $\Delta \varphi_{i}$ cut and $\Delta \varphi_{\text {min }}^{*}$ cut for QCD multijet background event suppression in allhadronic SUSY searches at LHC
- introduced alternative variables $\chi_{\text {min }}$ and $\hat{\omega}_{\text {min }}$ and demonstrated that they perform better than the conventional variables in a simulated event sample
- planning to submit a paper in January (including more angular variables and variables with dimension)

Backup slides

Simulated event sample

- MadGraph5_aMC@NLO 2.3.3 + Pythia 8.2
- Leading order, NNPDF2.3LO, MLM matching
- OCD multijet: up to 3 outgoing partons
- tt+jets: up to 3 additional outgoing partons, MadSpin
- W+jets, $Z(\rightarrow v v)+$ jets: up to 4 additional outgoing partons
- T1tttt(1950, 500), $\operatorname{T1tttt}(1350,1100)$: up to 2 additional outgoing partons
- Delphes 3.4.1
- delphes_card_CMS(ATLAS)_PileUp.tcl with a slight modification
- 23 pileup interactions on average
- object reconstruction: jets, $\mathrm{e}^{ \pm}, \mu^{ \pm}$, photons, MET
- isolation variables, jet τ-tagging, jet pileup subtraction
- Jets
- anti-kt $(R=0.4)$ by FastJet run within Delphes
- pT corrections - such that the peak location of pT distribution agrees with generated jets in ranges of pT and η
- $\mathrm{pT} \geq 30 \mathrm{GeV}$
- Generated Jets
- anti-kt ($R=0.4$) by FastJet run within Delphes
- particles after fragmentation, parton shower, and decay of certain short-lived particles
- no neutrinos or neutralinos
- Event selection
- vetos:
- no isolated $\mathrm{e}^{ \pm}, \mu^{ \pm}$, or photon
- no forward jet $(|\eta|>3)$ or τ-tagged jet
- no jet that doesn't meet quality criteria
- CMS card: Beta ≥ 0.14, NCharged >0, PTD <0.8, and MeanSqDeltaR < 0.1
- ATLAS card: NNeutrals > 0 and $0.7<$ EhadOverEem < 13
- kinematic phase space:
- njet $\geq 2, \mathrm{HT}>400 \mathrm{GeV}$
- MHT $>200 \mathrm{GeV}$
- MHT/MET < 1.25

Comparison of Delphes CMS and ATLAS cards: event distributions

CMS card

MG5+Pythia8+Delphes3(ATLAS card)
pp 13 TeV

Comparison of Delphes CMS and ATLAS cards: ROC curves

CMS card

ATLAS card

End

[^0]: note: The argument here ignores a
 secondary counter effect whereby the larger the underestimate, the more deflected the jet is likely to be from the "true" jet

