

Searches for Electroweak Production of Supersymmetric Gauginos and Sleptons with the ATLAS Detector

Christian Sander (DESY) on behalf of the ATLAS collaboration

25th International Conference on Supersymmetry and the Unification of Fundamental Interactions - Mumbai - 14th December 2017

Radiative EWSB → Minimisation condition $\frac{M_Z^2}{2} = \frac{(m_{H_d}^2 + \Sigma_d) - (m_{H_u}^2 + \Sigma_u) \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2$

Tree level:

- For large tan $\beta \to M_Z^2 = -2(m_{H_u}^2 + |\mu|^2) + \cdots$
- → light Higgsinos

One-loop:

- SUSY and SM contributions to $\Sigma_{u/d}$ should not be too different
- \rightarrow light winos (\lessapprox TeV) and even lighter stops

Two-loop:

- Stabilisation of other scalar masses
- ightarrow light gluinos $ightarrow m_{\tilde{g}} \lesssim 2m_{\tilde{t}}$

Light higgsinos, charginos and neutralinos, possibly accessible at LHC

RPC Signatures - Light Leptons

2I+0 jets

3I+0 jets

Updated results with full 2015+2016 data set (36.1 fb⁻¹) ATLAS-CONF-2017-039

2L/3L Search Strategy

Triggers: Di-lepton (ee, $e\mu$ or $\mu\mu$) with thresholds ranging from 8-22 GeV and single-photon triggers (for bg estimation) with thresholds ranging from 35-140 GeV

Objects:

- Electrons: $p_T > 25/20/10$ GeV, $|\eta| < 2.47$
- Muons: $p_T > 25/20/10$ GeV, $|\eta| < 2.7$
- Jets: *p*_T > 60 GeV, |η| < 4.5
- *b*-jets: $p_T > 20$ GeV, $|\eta| < 2.4$ (MC2c10, ~77% efficiency)

Schematic strategy for 2I SF

)] m_{z} m_{w} m_{z} m_{w} m_{T2}

Search variables: 2I+0 jets

 m_{\parallel} , charge / flavour of lepton-pair, and m_{T2}

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

with

$$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}},\mathbf{q}_{\mathrm{T}}) = \sqrt{2(p_{\mathrm{T}}q_{\mathrm{T}}-\mathbf{p}_{\mathrm{T}}\cdot\mathbf{q}_{\mathrm{T}})}$$

ATLAS-CONF-2017-039

C. Sander

2L/3L Search Strategy Cont.

Search variables: 2I + 2 jets

 N_{jets}, m_{II}, m_{jj}, p_T(Z/W), m_{T2}, ΔR(jj), ΔR(II), Δφ(MET,Z/W), MET/p_T(Z/W), Δφ(MET,ISR), Δφ(MET,jet₁), MET/ISR, | η(Z)|, p_T (jet₃)

Search variables: 3I + 0 jets

• *m*_{SFOS}, MET, *p*_T(*I*₃), *N*_{jets}, *m*_{T,min}, *p*_T(*III*), *p*_T (jet₁)

$2\ell+ ext{jets}$ signal region definitions							
	SR2-int	SR2-high	SR2-low-2J	SR2-low-3J			
n _{non-b-tagged jets}	2	2	2	3-5			
$m_{\ell\ell} \; [\text{GeV}]$	81	-101	81-101	86-96			
m_{jj} [GeV]	70	-100	70-90	70-90			
$E_{\rm T}^{\rm miss}$ [GeV]	>150	> 250	>100	>100			
$p_{\rm T}^{\vec{Z}}$ [GeV]	>	-80	> 60	> 40			
$p_{\rm T}^{\tilde{W}}$ [GeV]	>	100					
$m_{\rm T2}$ [GeV]	>	100					
$\Delta R_{(jj)}$	<	<1.5		<2.2			
$\Delta R_{(\ell\ell)}$	<	(1.8)					
$\Delta \phi_{(\vec{E}_{\rm m}^{\rm miss},Z)}$			< 0.8				
$\Delta \phi_{(\vec{E}_{miss},W)}$	0.9	5-3.0	> 1.5	< 2.2			
$E_{\rm T}^{\rm miss}/p_{\rm T}^Z$			0.6 - 1.6				
$E_{\rm T}^{\rm miss}/p_{\rm T}^{W}$			< 0.8				
$\Delta \phi_{(\vec{E}_{m}^{miss}, ISR)}$				> 2.4			
$\Delta \phi_{(\vec{E}_{r}^{miss}, iet1)}$				> 2.6			
$E_{\rm T}^{\rm miss}/{\rm ISR}$				0.4-0.8			
$ \eta(Z) $				< 1.6			
$p_{\rm T}^{\rm jet3}$ [GeV]				> 30			

DESY

2L/3L Background Estimation

Irreducible: SM processes with prompt leptons and genuine MET from neutrinos

- From simulation; normalised to data in control regions (CRs)
- Minor backgrounds (Z/γ^* +jets or Higgs for 2I+0 jets) directly from simulation
- For 2I+jets: Z/γ^* +jets estimated from γ +jets data

Reducible: One or more non-prompt "fakes" (heavy flavour decays, photon conversions, or mis-ID of light-flavoured jets)

- For 2I+0 jets/2I+2 jets estimated via Matrix Method
 - Measure efficiencies for prompt (R) and non-prompt (F) taus in CRs
 - Define "loose" (L) leptons in addition to "tight" (T) signal leptons
 - Obtain from (LL, LT, TL, TT) the numbers for (FF, FR, RF, RR)
- For 3I via Fake-Factor Method: Apply T/L ratio from CR to SR with loose leptons

Background predictions tested in validation regions (VRs)

Background estimation summary									
Channel $2\ell + 0$ jets $2\ell + j$ ets 3ℓ									
Fake leptons	Matrix	method (MM)	Fake factor method (FF)						
$t\overline{t} + Wt$	CR	MC	FF						
VV	CR	MC	CR (WZ-only)						
Z/γ +jets	$MC \qquad \gamma + jet template \qquad FF$								
Higgs/ VVV/ top+V MC									

ATLAS-CONF-2017-039

Important systematic uncertainties:

ATLAS-CONF-2017-039

- JES and JER for 2L/3L+0 jets
- MET modelling for 2L/3L+0 jets
- **MC modelling** for 2L+jets: *VV* modelling (30-40%)
- **Z+jets estimation:** for 2I+jets 40-70%
- Statistical uncertainty on bg prediction: 10-70% (5-30%) for 2I (3I)+0 jets
- ... many smaller uncertainties

Some selected distributions:

No significant excess above SM expectation observed in any SR \rightarrow Limits

C. Sander

Final states with tau leptons well motivated Djouadi et al., arXiv hep-ph/0104115

- Large mixing in 3^{rd} generation sfermion sector (e.g. large tan β)
 - \rightarrow Staus can be significantly lighter than other sleptons, i.e.
- Depending on chargino and neutralino mixing matrix: $\chi_{2}^{\tilde{\chi}_{2}^{0}}$ Possibility of enhanced decays to higgs (\rightarrow more bs and taus)
- Light stau as NLSP may help to predict right amount of relic DM density via coannihilation channels

SUSY-2016-23, 1708.07875, submitted to EPJ C

Triggers:

- Asymmetric di-tau: p_T > 80/50 GeV
- Di-tau+MET: $p_T > 35/25$ GeV + MET>50 GeV (offline MET > 150 GeV)

Taus:

- $p_{T,1} > 95$ (50) GeV and $p_{T,2} > 65$ (40) GeV for asymmetric (di-tau+MET) trigger
- $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$
- Reco. efficiencies 60%(50%), 55%(40%), and 45%(30%) for loose/medium/tight for 1- (3-) prongs
- Two SRs, optimised for small and large mass differences ($m_{\tilde{\tau}} m_{\text{LSP}}$)

SR-lowMass	SR-	highMass	
At least one opp	osite-sign tau pair		
$b ext{-jet}$	veto		
Z-v	eto		
At least two medium tau candidates	at least one medium and one tight tau candidates		
	$m(au_1, au_2)$	$_{2}) > 110 \mathrm{GeV}$	
$m_{\mathrm{T2}} > 70 \ \mathrm{GeV}$	m_{T2}	$> 90 { m GeV}$	
$Di-tau+E_T^{miss}$ trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger	asymmetric di-tau trigger	
$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 110 {\rm GeV}$	
$p_{\mathrm{T},\tau_1} > 50 \mathrm{GeV}$	$p_{\mathrm{T},\tau_1} > 80 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_1} > 95 \mathrm{~GeV}$	
$p_{\mathrm{T},\tau_2} > 40 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_2} > 40 \mathrm{~GeV}$	$p_{\mathrm{T},\tau_2} > 65 \mathrm{~GeV}$	

C. Sander

Multilepton RPV Signatures

R-parity violation: LSP is no DM candidate; but other advantages of SUSY remain

$$\frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \frac{1}{2}\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$$

Typically larger multiplicities in final state (\rightarrow 4 leptons), and less MET

ATLAS-CONF-2016-075

Triggers: Various single and double lepton triggers

Search regions:	Sample	$N(e,\mu)$ signal	$N(e,\mu)$ loose	Z boson	m _{eff} [GeV]
	SRA	>= 4	>= 0	veto	> 600
	CR-SRA	= 2	>= 2	veto	> 600
	SRB	>= 4	>= 0	veto	> 900
	CR-SRB	= 2	>= 2	veto	> 900
	VR	>= 4	>= 0	veto	< 600
	CR-VR	= 2	>= 2	veto	< 600

Irreducible bgs: *ZZ*, *ttZ*, *ttWW*, *tWZ*, *VVZ* (*ZZZ*, *WZZ*, *WWZ*), Higgs (*ggH*, *WH*, *ZH*, *ttH*), *tttt*, *tttW* with 4 non-prompt leptons

• Estimated from simulation

Reducible bgs with one or more "fakes" *tt*, *Z*+jets, *WZ*, *WWW*, *ttW*, *ttt* (and above processes with less than 4L)

• Applying fake factors to CRs with one or two leptons of loose quality

Check background estimation in validation regions (e.g. at small m_{eff})

ATLAS-CONF-2016-075

4L Results

- Comprehensive searches program with multiple leptons for electroweak SUSY partners at ATLAS
- No significant deviation from SM expectation was observed and limits on various RPC and RPV SUSY models have been derived
- More results at <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>

Backup

Process	Generator(s)	Full/fast sim.	Cross-section calculation	Tune	PDF set
WZ, WW ZZ	Sherpa 2.2.1 [57] Sherpa 2.2.2 [57]	Fullsim Fullsim	NLO [58] NLO [58]	Default Default	NNPDF30NNLO [59] NNPDF30NNLO [59]
VVV	Sherpa 2.2.1	Fullsim	NLO [58]	Default	NNPDF30NNLO
ggH, VBF, ggZH ZH, WH <i>tīH</i>	Роwнед v2 [60] + Рутніа 8.186 [56] Рутніл 8.186 аMC@NLO [65] 2.3.2 + Рутніа 8.186	Fullsim Fullsim Fullsim	NNLO+NNLL [61] NNLO+NNLL NLO [66]	AZNLO [62] A14 [64] A14	CT10 [63] NNPDF23LO NNPDF23LO [67]
$t\bar{t}Z, t\bar{t}W, t\bar{t}WW$	MADGRAPH5_aMC@NLO 2.2.2 [68]	Fullsim	NLO [66]	A14	NNPDF23LO
$t\bar{t}Z^{\dagger}$	SHERPA 2.2.1	AF-II	NLO [66]	Default	NNPDF30NNLO
ιWZ	аMC@NLO 2.3.2 + Рутніл 8.186	Fullsim	NLO [66]	A14	NNPDF23LO
$tt\bar{t}(W), t\bar{t}t\bar{t}$	МадGraph5_aMC@NLO 2.2.2 + Рутніа 8.186	Fullsim	NLO [68]	A14	NNPDF23LO
tī	Powheg v2 + Pythia 6.428 [69]	Fullsim	NNLO+NNLL [70]	Perugia2012 [71]	CT10
Z+jets, W+jets	МлдGrарн5_aMC@NLO 2.2.2 + Рутніа 8.186	Fullsim	NNLO [72]	A14	NNPDF23LO
SUSY signal	MadGraph5_aMC@NLO 2.2.2 + Рутніа 8.186	AF-II	NLO+NLL [45–52]	A14	NNPDF23LO

Generalisation of transverse mass to final states with two invisible particles

SRs, CRs, and VRs for 2L+0Jets

$2\ell + 0$ jets binned signal region definitions									
$m_{\rm T2} \; [{\rm GeV}]$	$m_{\ell\ell} \ [GeV]$	SF bin	DF bin						
	111-150	SR2-SF-a							
100 150	150-200	SR2-SF-b	SDO DE a						
100-150	200-300	SR2-SF-c	SR2-DF-a						
	> 300	SR2-SF-d							
	111-150	SR2-SF-e							
150 200	150-200	SR2-SF-f	SDO DE P						
150-200	200-300	SR2-SF-g	5 12-DF- 0						
	> 300	SR2-SF-h							
	111-150	SR2-SF-i							
200 200	150-200	SR2-SF-j	SD3 DE a						
200-300	200-300	SR2-SF-k	SR2-DF-C						
	> 300	SR2-SF-l							
> 300	> 111	SR2-SF-m	SR2-DF-d						
$2\ell\mathbf{+0jet}$	s inclusive	signal region d	lefinitions						
> 100	> 111	SR2-SF-loose	-						
> 130	> 300	SR2-SF-tight	-						
> 100	-	-	SR2-DF-100						
> 150	-	-	SR2-DF-150						
> 200	-	-	SR2-DF-200						
> 300	-	-	SR2-DF-300						

$2\ell + 0$ jets control and validation region definitions											
Region	CR2-VV-DF	CR2-VV-SF	CR2-Top	VR2-VV-SF/DF	VR2-Top						
lepton flavour	SF	DF	DF	SF(DF)	DF						
$n_{\rm central \ non-b-tagged \ jets}$	0	0	0	0	0						
$n_{ m central}$ b-tagged jets	0	0	≥ 1	0	≥ 1						
$ m_{\ell\ell} - m_Z $ [GeV]	< 20			> 20 (-)							
$m_{\mathrm{T2}} \; [\mathrm{GeV}]$	> 130	50 - 75	75 - 100	75 - 100	> 100						

SRs, CRs, and VRs for 2L+Jets

$2\ell + ext{jets signal region definitions}$				$2\ell + ext{jets}$ validation region definitions					
	SR2-int	SR2-high	SR2-low-2J	SR2-low-3J		VR2-int(high)	VR2-low-2J(3J)	VR2-VV-int	VR2-VV-low
non b torred ista		2	2	3-5		<u> </u>	oose selection		
$m_{\rm ex}$ [CoV]	81	101	81 101	86.96	$n_{\rm non-b-tagged jets}$	≥ 2	2(3-5)		1
		101	70.00	80-90 70.00	$E_{\rm T}^{\rm miss}$ [GeV]	>150(250)	>100	>150	>150
$m_{jj} [\text{GeV}]$	70	100	70-90	70-90	$m_{\ell\ell} \; [\text{GeV}]$	81-101	81-101 (86-96)		81-101
$E_{\rm T}^{\rm miss}$ [GeV]	>150	> 250	>100	>100	$m_{jj} \; [\text{GeV}]$	$<\!60,>100$	<60,>100		
$p_{\rm T}^Z$ [GeV]	>8	80	> 60	> 40	$p_{\rm T}^Z ~[{\rm GeV}]$	>80	> 60(40)		
$p_{\rm T}^{\tilde{W}}$ [GeV]	>1	.00			$p_{\mathrm{T}}^{W} \; [\mathrm{GeV}]$	>100			
$m_{\rm T2}$ [GeV]	>1	00			$ \eta(Z) $		(< 1.6)		
ΛR		5		~ ? ?	$p_{\rm T}^{\rm jet3}$ [GeV]		(> 30)		
$\Delta n_{(jj)}$				\ 2.2	$\Delta \phi_{(\vec{E}^{\text{miss}} \text{ iet})}$			>0.4	>0.4
$\Delta R_{(\ell\ell)}$	<1	1.8			$m_{\mathrm{T2}} [\mathrm{GeV}]$	$>100^{[*]}$		>100	
$\Delta \phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},Z)}$			< 0.8		$\Delta R_{(\ell\ell)}$	$< 1.8^{[*]}$			< 0.2
$\Delta \phi_{(\vec{E}_{T}^{\mathrm{miss}},W)}$	0.5-	-3.0	> 1.5	< 2.2		t	ight selection		
$E_{\rm T}^{\rm miss}/p_{\rm T}^{Z}$			0.6 - 1.6		$\Delta R_{(jj)}$	<1.5	(<2.2)		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{W}$			< 0.8		$\Delta \phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},W)}$	0.5 - 3.0	> 1.5(< 2.2)		
$\Delta \phi_{(\vec{E}_{\text{miss ISD}})}$				> 2.4	$\Delta \phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},Z)}$		< 0.8(-)		
$\Lambda \phi$				N 2 6	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{W}$		< 0.8(-)		
$\Delta \psi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet1})$				/ 2.0	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{Z}$		0.6 - 1.6(-)		
$ E_{\rm T}^{\rm miss}/{\rm ISR}$				0.4 - 0.8	$E_{\rm T}^{\rm miss}/{\rm ISR}$		(0.4 - 0.8)		
$ \eta(Z) $				< 1.6	$\Delta \phi_{(\vec{E}_{T}^{\mathrm{miss}},\mathrm{ISR})}$		(> 2.4)		
$p_{\rm T}^{\rm jet3}$ [GeV]				> 30	$\Delta \phi_{(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet1})}$		(> 2.6)		

SRs, CRs, and VRs for 3L+Jets

	3ℓ binned signal region definitions											
$m_{ m SFOS}$	$E_{\rm T}^{\rm miss}$	$p_{\mathrm{T}}^{\ell_3}$	$n_{\rm non-b-tagged jets}$	$m_{\mathrm{T}}^{\mathrm{min}}$	$p_{\mathrm{T}}^{\ell\ell\ell}$	$p_{\mathrm{T}}^{\mathrm{jet1}}$	Bins					
[GeV]	[GeV]	[GeV]		[GeV]	[GeV]	[GeV]						
~ 81.9	> 130	20-30		> 110			SR3-slep-a					
<01.2	/ 150	> 30		/ 110			SR3-slep-b					
		20-50					SR3-slep-c					
>101.2	> 130	50-80		> 110			SR3-slep-d					
		> 80					SR3-slep-e					
	60-120						SR3-WZ-0Ja					
81.2-101.2	120-170		0	> 110			SR3-WZ-0Jb					
	> 170						SR3-WZ-0Jc					
	120-200			> 110	< 120	> 70	SR3-WZ-1Ja					
81.2-101.2	> 200		≥ 1	110-160			SR3-WZ-1Jb					
	> 200	> 35		> 160			SR3-WZ-1Jc					

$3\ell { m control}$ and validation region definitions										
	$p_{\mathrm{T}}^{\ell_3}$	$m_{ m SFOS}$	$E_{\rm T}^{\rm miss}$	$m_{ m T}^{ m min}$	n	n				
	[GeV]	$[\mathrm{GeV}]$	[GeV]	[GeV]	non-b-tagged jets	b-tagged jets				
CR3-WZ-inc	> 20	81.2 - 101.2	> 120	< 110	—	0				
CR3-WZ-0j	> 20	81.2 - 101.2	> 60	< 110	0	0				
CR3-WZ-1j	> 20	81.2 - 101.2	> 120	< 110	> 0	0				
VR3-Za	> 30	81.2 - 101.2	40-60	_	—	_				
VR3-Zb	> 30	81.2 - 101.2	$>\!60$	—	—	> 0				
VR3-offZa	> 30	d [81 9 101 9]	40-60	_	_	_				
VR3-offZb	> 20	$\notin [01.2, 101.2]$	> 40	_	_	> 0				
VR3-Za-0J	> 20	Q1 9 101 9	40-60	_	0	0				
VR3-Za-1J	> 20	01.2-101.2	40 - 60	_	> 0	0				

2L+0 Jets Results

SR2-	SF-a	SF-b	SF-c	SF-d	SF-e	SF-f	SF-g
Observed	56	28	19	13	10	6	6
Fitted back	ground events						
Total SM	47 ± 12	25 ± 5	25 ± 4	14 ± 7	5.2 ± 1.4	1.9 ± 1.2	3.8 ± 1.9
tī	10 ± 4	7.4 ± 3.5	7.3 ± 3.0	2.7 ± 1.7	_	_	$0.11^{+0.21}_{-0.11}$
Wt	1.0 ± 1.0	1.3 ± 0.7	1.6 ± 0.6	1.1 ± 1.1	_	_	-0.11
VV	21 ± 4	11.3 ± 2.9	12.6 ± 2.4	3.9 ± 2.4	4.4 ± 1.3	1.8 ± 1.2	2.8 ± 1.6
FNP	$2.1^{+2.9}_{-2.1}$	_	_	5 ± 4	_	_	0.9 ± 0.4
Z/γ +jets	13 ± 9	4.7 ± 2.6	3.3 ± 3.2	$1.2^{+1.7}$	0.7 ± 0.6	$0.02^{+0.21}_{-0.02}$	_
other	0.18 ± 0.08	0.12 ± 0.05	0.11 ± 0.04	$0.09 \pm 0.05^{-1.2}$	0.050 ± 0.03	0.03 ± 0.01	0.05 ± 0.02
S R2-	SF	-h	SF-i	SF-j	SF-k	SF-1	SF-m
Observed		0	1	3	2	2	7
Fitted back	ground events						
Total SM	3.1 ± 1	.0 1.9	± 0.9 1.6	± 0.5	1.5 ± 0.6	1.8 ± 0.8	2.6 ± 0.9
tī		_	_	_	_	_	
Wt		_	_	_	_	_	_
VV	3.0 ± 1	.0 1.5	± 0.8 1.6	± 0.5	1.4 ± 0.6	1.7 ± 0.8	2.6 ± 0.9
FNP		_	_	_	_	_	_
Z/γ +jets	$0.02^{+0.0}$	$0.42 \pm 0.42 \pm$	0.20	_	$0.02^{+0.20}_{-0.02}$	_	$0.02^{+0.06}_{-0.02}$
other	0.03 ± 0.0	$0.03 \pm 0.03 \pm$	0.02	- 0.0	04 ± 0.02 (0.02 ± 0.01	0.02 ± 0.02

2L+0 Jets Results

SR2-		DF-a	DF-b		DF-c	DF-d
Observed		67			4	2
Fitted backgr	round events					
Total SM	5	7 ± 7	9.6 ± 1.9	1.	$5^{+1.7}_{-1.5}$	0.6 ± 0.6
tī	2	4 ± 8	_		_	
Wt	4.5	± 1.0	_		_	_
VV	2	6 ± 6	8.8 ± 1.8	1.	$5^{+1.7}_{-1.5}$	0.6 ± 0.6
FNP	1.75 ±	0.18	0.57 ± 0.23		-1.5	_
Z/γ +jets		_	_		_	_
other	0.40 ±	: 0.09	0.17 ± 0.07	0.07 ±	0.07	0.02 ± 0.02
SR2.	SF-loose	SF-tight	DF-100	DF-150	DF-200	DF-300
512-	51-10050	51-tight	D1-100	DI-130	D1-200	DI-500
Observed	153	9	78	11	6	2
Fitted backg	ground events					
Total SM	133 ± 22	9.8 ± 2.9	68 ± 7	11.5 ± 3.1	2.1 ± 1.9	0.6 ± 0.6
tī	27 ± 11	_	24 ± 8	_	_	_
Wt	5.0 ± 2.2	—	4.5 ± 1.0	_	_	_
VV	70 ± 11	9.6 ± 3.0	37 ± 8	10.8 ± 3.0	2.0 ± 1.9	0.6 ± 0.6
FNP	6 ± 4	0.0 ± 0.0	2.17 ± 0.29	0.42 ± 0.23	_	_
Z/γ +jets	23 ± 14	$0.09^{+0.34}_{-0.09}$	_	_	_	—
others	0.79 ± 0.23	0.09 ± 0.01	0.67 ± 0.16	0.26 ± 0.08	0.09 ± 0.07	0.02 ± 0.02

SR2-	int	high	low (combined)
Observed	2	0	11
Expected events			
Total SM	4.1 ± 2.6	1.6 ± 1.6	4.2 ± 3.8
VV	4.0 ± 1.8	1.6 ± 1.1	1.7 ± 1.0
$t\bar{t}$	0.15 ± 0.11	0.04 ± 0.03	0.8 ± 0.4
FNP	$0.0^{+0.2}_{-0.0}$	$0.0^{+0.1}_{-0.0}$	$0.7^{+1.8}_{-0.7}$
Z+jets	$0.0^{+1.8}_{-0.0}$	$0.0^{+0.2}_{-0.0}$	$1.0^{+2.7}_{-1.0}$

3L Results

SR3-	WZ-0Ja	WZ-0Jb	WZ-0Jc	WZ-1Ja	WZ-1Jb	WZ-1Jc
Observed	21	1	2	1	3	4
Fitted backg	round events					
Total SM	21.74 ± 2.85	2.68 ± 0.46	1.56 ± 0.33	2.21 ± 0.53	1.82 ± 0.26	1.26 ± 0.34
WZ	19.48 ± 2.90	2.46 ± 0.46	1.33 ± 0.31	1.79 ± 0.48	1.49 ± 0.22	0.92 ± 0.28
ZZ	0.81 ± 0.23	0.06 ± 0.03	0.05 ± 0.01	0.05 ± 0.02	0.02 ± 0.01	0.02 ± 0.00
VVV	0.31 ± 0.07	0.13 ± 0.04	0.13 ± 0.03	0.11 ± 0.02	0.12 ± 0.03	0.23 ± 0.05
$t\bar{t}V$	0.04 ± 0.02	0.01 ± 0.01	0.01 ± 0.01	0.14 ± 0.04	0.12 ± 0.02	0.08 ± 0.02
Higgs	_	_	_	0.01 ± 0.00	_	-
FNP	1.10 ± 0.54	0.02 ± 0.01	0.04 ± 0.02	0.11 ± 0.06	0.07 ± 0.04	0.01 ± 0.00
SR3-	slep-a	sle	ep-b	slep-c	slep-d	slep-e
Observed	4		3	9	0	0
Fitted backg	ground events					
Total SM	2.23 ± 0.79	2.79 ± 0	0.43 5.	41 ± 0.93	1.42 ± 0.38	1.14 ± 0.23
WZ	1.08 ± 0.38	1.98 ±	0.31 3.	85 ± 0.70	0.91 ± 0.26	0.76 ± 0.17
ZZ	0.02 ± 0.01	0.01	+0.01 0.	13 ± 0.03	0.06 ± 0.02	0.03 ± 0.01
VVV	0.26 ± 0.08	0.34 ± 0	0.05 0.	72 ± 0.12	0.36 ± 0.10	0.25 ± 0.05
$t\bar{t}V$	0.07 ± 0.03	0.09 ± 0.09	0.02 0.	20 ± 0.04	0.07 ± 0.02	0.02 ± 0.01
Higgs	0.01 ± 0.00	0.01 ± 0.01	0.01 0.	03 ± 0.02	0.01 ± 0.00	_
FNP	0.80 ± 0.46	0.36 ± 0.00	0.18 0.	48 ± 0.25	_	0.08 ± 0.04

C. Sander

Di-Tau SRs, CRs for Fake-Factor

CR-A	SR-D ($SR-lowMass$)	CR-A	SR-D ($SR-highMass$)	
Di-tau+ E_{T}^{miss} trigger		Di-tau+ E_{T}^{miss} or asymmetric di-tau trigger		
≥ 2 loose tau leptons (SS)	$\geq 2 \text{ medium tau leptons (OS)}$	≥ 2 loose tau leptons (OS)	$\geq 2 \text{ medium tau leptons (OS)}$	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		< 1 medium tau < 1 tight tau leptons	≥ 1 tight tau lepton	
$\Delta R(\tau_1, \tau_2) > 1.5$		$\Delta R(\tau_1, \tau_2) > 1.8$		
$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 110 { m GeV}$	$E_{\rm T}^{\rm miss} > 110 { m ~GeV}$	
$m_{\rm T2} > 70 { m ~GeV}$	$m_{\mathrm{T2}} > 70 \ \mathrm{GeV}$	$m_{\rm T2} > 90~{ m GeV}$	$m_{\rm T2} > 90 { m ~GeV}$	
VR-E	VR-F	VR-E	VR-F	
Di-tau trigger		Di-tau or asymmetric di-tau trigger		
≥ 2 loose tau leptons (SS)	≥ 2 medium tau leptons (OS)	≥ 2 loose tau leptons (OS)	$\geq 2 \text{ medium tau leptons (OS)}$	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		< 1 medium tau < 1 tight tau leptons	≥ 1 tight tau lepton	
$\Delta R(\tau_1, \tau_2) > 1.5$		$\Delta R(\tau_1, \tau_2) > 1.8$		
$E_{\rm T}^{\rm miss} > 40 { m GeV}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 40 \; {\rm GeV}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	
$50 < m_{\rm T2} < 70 { m ~GeV}$	$50 < m_{ m T2} < 70 { m ~GeV}$	$60 < m_{\rm T2} < 90 { m GeV}$	$60 < m_{ m T2} < 90 { m ~GeV}$	
CR-B	CR-C	CR-B	CR-C	
Di-tau trigger		Di-tau or asymmetric di-tau trigger		
≥ 2 loose tau leptons (SS)	≥ 2 medium tau leptons (OS)	≥ 2 loose tau leptons (OS)	$\geq 2 \text{ medium tau leptons (OS)}$	
$m(\tau_1, \tau_2) < 250 \text{ GeV}$		< 1 medium tau < 1 tight tau leptons	≥ 1 tight tau	
$\Delta R(\tau_1, \tau_2) > 1.5$		$\Delta R(\tau_1, \tau_2) > 1.8$		
$E_{\rm T}^{\rm miss} > 40 {\rm ~GeV}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 40 \; {\rm GeV}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$	
$20 < m_{\rm T2} < 50 { m GeV}$	$20 < m_{ m T2} < 50 { m ~GeV}$	$10 < m_{\rm T2} < 60 { m GeV}$	$10 < m_{ m T2} < 60 { m ~GeV}$	

DESY

Di-Tau SRs, CRs, and VRs

Di-Tau Systematic Uncertainties

Source of systematic uncertainty	SR-lowMass	SR-highMass
Normalisation uncertainties of the multi-jet background	32	32
Statistical uncertainty of MC samples	18	24
Multi-jet estimation	14	13
Pile-up reweighting	8	8
Jet energy scale and resolution	11	4
Tau identification and energy scale	6	8
$E_{\rm T}^{\rm miss}$ soft-term resolution and scale	2	6
Total	40	38

Di-Tau Results

$$\begin{bmatrix} N_{TT} \\ N_{Tl} \\ N_{lT} \\ N_{lI} \end{bmatrix} = \begin{bmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{bmatrix} \begin{bmatrix} N_{LL}^{RR} \\ N_{LL}^{RT} \\ N_{LL}^{FR} \\ N_{LL}^{FF} \end{bmatrix},$$

$$\begin{split} N_{LL}^{RR} &= (1 - f_1)(1 - f_2)N_{TT} - \left[f_2(1 - f_1)\right]N_{Tl} - \left[f_1(1 - f_2)\right]N_{lT} + f_1f_2N_{ll}\\ N_{LL}^{RF} &= -(1 - f_1)(1 - r_2)N_{TT} + \left[r_2(1 - f_1)\right]N_{Tl} + \left[f_1(1 - r_2)\right]N_{lT} + f_1r_2N_{ll}\\ N_{LL}^{RF} &= -(1 - f_2)(1 - r_1)N_{TT} + \left[f_2(1 - r_1)\right]N_{Tl} + \left[r_1(1 - f_2)\right]N_{lT} + f_2r_1N_{ll}\\ N_{LL}^{FF} &= (1 - r_1)(1 - r_2)N_{TT} - \left[r_2(1 - r_1)\right]N_{Tl} - \left[r_1(1 - r_2)\right]N_{lT} + r_1r_2N_{ll}. \end{split}$$

with *r* and *f* being the efficiencies for "real" (prompt) and "fake" (non-prompt) leptons