
mini-ICAL status and feasibility of shallow depth ICAL

V. M. Datar

INO Cell

India based Neutrino Observatory at Pottipuram (Theni)

Why mini-ICAL (80 ton, $4m \times 4m \times 11$ layers of Fe)?

- Performance of Magnet: Measured magnetic field (using sense coils and Hall probes) vs 3D FE simulation
- ➤ Performance of RPC including DC-DC supply, FE electronics in fringe B-field, EMI, closed loop gas system
- Feasibility of Muon Spin Rotation (μ SR) for information about B-field complementary to sense loop and Hall probe data
- Measure $\Phi(\mu^+)$, $\Phi(\mu^-)$ at Madurai (near equator) and compare with simulation (by Athar, Honda)
- > Proof of principle test of cosmic muon veto detector

mini-ICAL magnet assembly

- ➤ Base support structure for 80 ton magnet
- \triangleright Assembly of 3 ton gantry (max. plate weight 1.4 tons), Δz @ 3.8 ton load
- ➤ G-10 sheets on floor on which OFHC Copper "U-sections" placed in 2 sets (for 2 sets of current carrying coils)
- Assembly of magnet plates around "U"s including fixing of Aluminium RPC guide strips (3 nos), field measurement sense coils on layers 1,6, 11, 3mm shims for Hall probe insertion, inter-layer SS spacers, G-10 intra-coil spacers, induction brazing of "C"s and inlet & outlet pipes followed by leak testing at 10 bar

RPC re-assembly

- > RPC tray delivery much delayed
- As some of the gaps are considerably smaller than their design value (due to bending of plates) it was decided that existing Al trays will be modified, pickup panels resized and FEE cards repositioned for use in mini-ICAL
- ➤ 6 completed trays are placed in mini-ICAL
- ➤ Mini-ICAL magnetic field measurements completed on layers 1, 11
- Closed loop gas system for RPCs working as expected
- > After hooking up trigger system, first muon tracks with I=800A seen yesterday
- ➤ All 10 RPCs expected to be in place in another week

Powering up mini-ICAL, magnetic field measurements

- ➤ Low conductivity chilled water circulation system for Magnet PS and OFHC Cu coils of magnet (80 LPS, 8 bar)
- Magnet PS from VECC, Kolkata and set up in its shed (30V, 1500A. linear)
- > Multi-core Cu cable (2×400mm² × 45m each way) for MPS-coil connection
- > Magnetic field measurement system from Pune vendor installed, working
- ➤ Electrical power supply modifications completed (control/distribution panel, wiring modifications, earth pits)
- > Diesel generator (125 kVA) installation completed
- First measurements with Hall sensors (150 ns) on L1 show B_{max}~1.2 T @800A

Plate machining Job

Spacers and Pins

Copper Conductor Spool

Magnet Components (Core & Coil)

Conductor bending machine

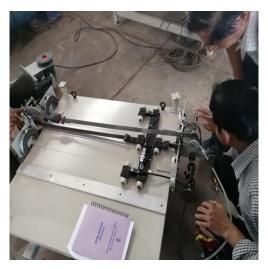
Conductor straightening machine

Coil fabrication

More pictures of mini-ICAL assembly

Gantry Crane for plate handling Associated systems

Induction brazing machine


Induction brazing in progress

Brazing joint pressure test

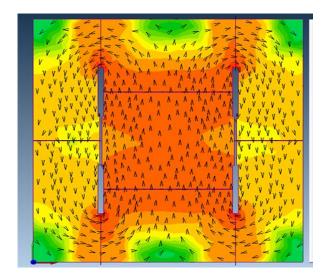
RPC Gap measurement system

Mock-up test set-up

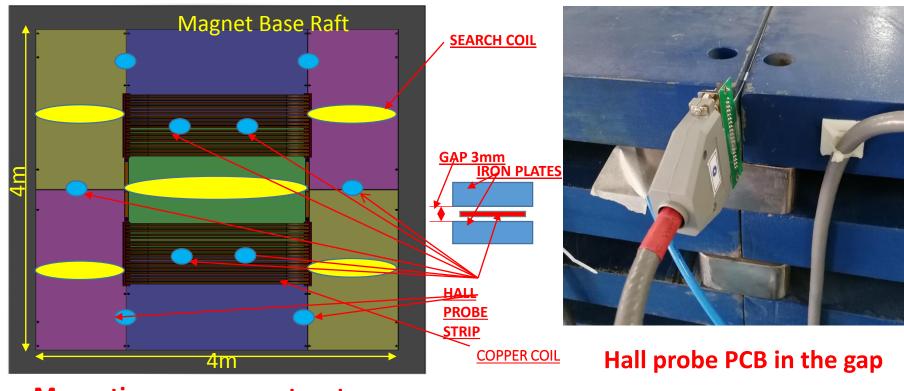
Magnet assembly in progress

Spacer, Al guide & G-10 bracket

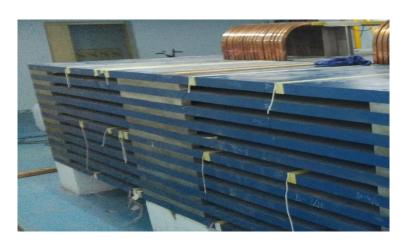
Layers in assembly


Coil Brazing

Coil hydrostatic pressure test


Low conductivity water cooling system for magnet & power supply

Field map at 26kAT


Magnet power supply 30V DC, 1200 AMP

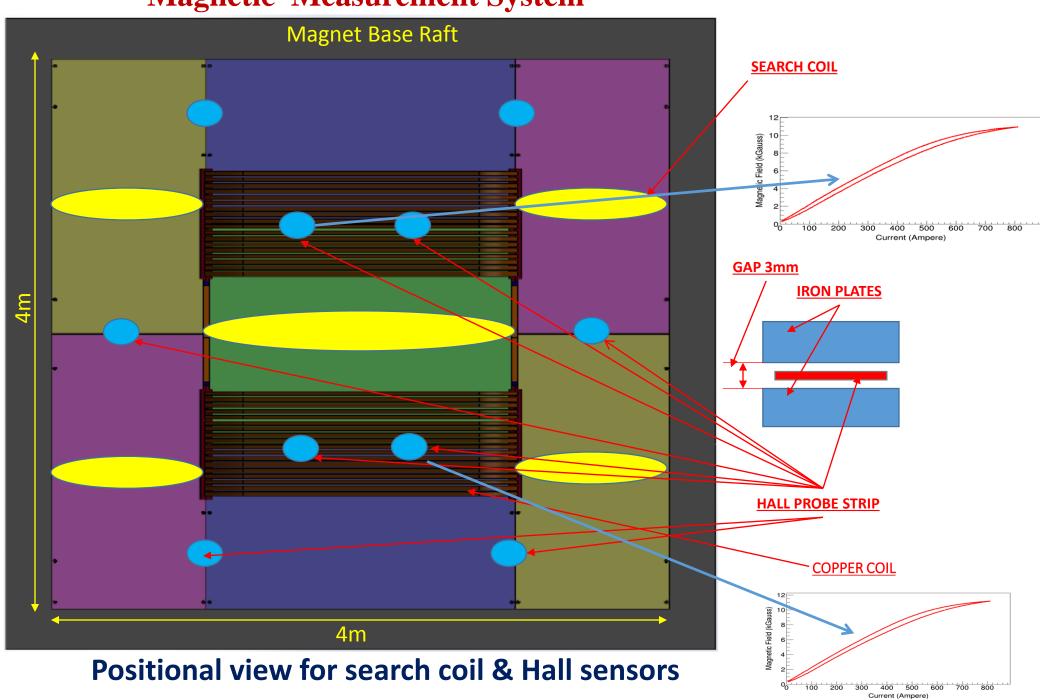
Magnetic measurement system (1st ,6th , 11th layer)

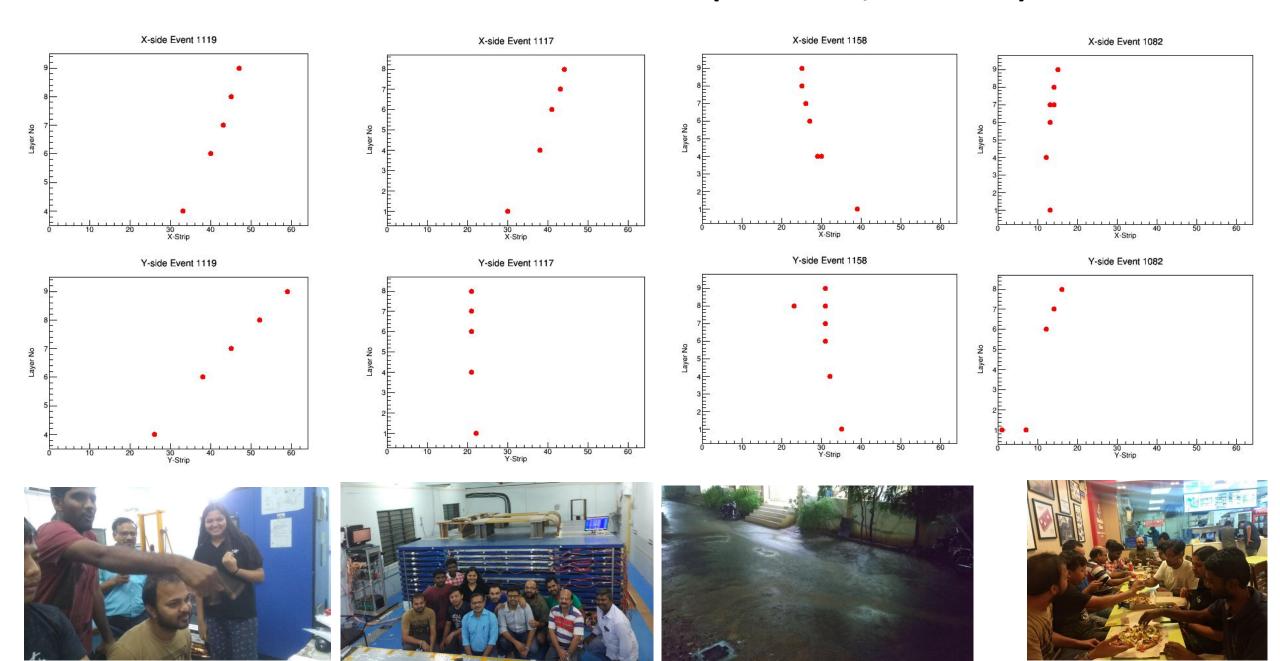
Hall probe PCB strip

Search coils for flux measurement

mini-ICAL assembly

RPC re-assembly


Magnetic Measurement System


Search coils wrapped on 1st , 6th & 11th layer

Magnetic Measurement System

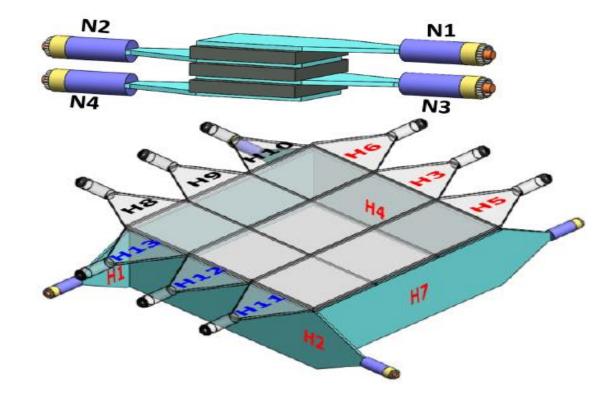
Mini-ICAL hall entry door

First muons seen in mini-ICAL (18:46 hrs, 8-5-2018)!

Is a shallow depth ICAL feasible?

Can one overcome the background due to cosmic rays?

- Muons (electrically charged): primary and secondary
- Primary γ-rays, p, n, will not survive at ~100m depth (λ_{em} ~ 0.1m, λ_{had} ~ 0.4m)


A cosmic muon veto (CMV) detector with $\epsilon \geq$ 99.99% needed

If SICAL at ~100m depth is feasible then

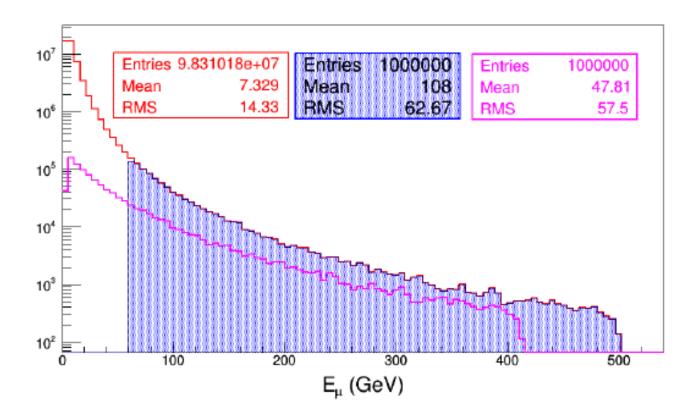
- (a) can be sited almost *anywhere*, much bigger detectors possible
- (b) detector monitoring using cosmic muons
- (c) information about B-field via Muon Spin Rotation.

 \triangleright Results from a small (1m \times 1m \times 0.3m) CMV detector promising

Veto efficiency = $99.978 \pm 0.003 \%$

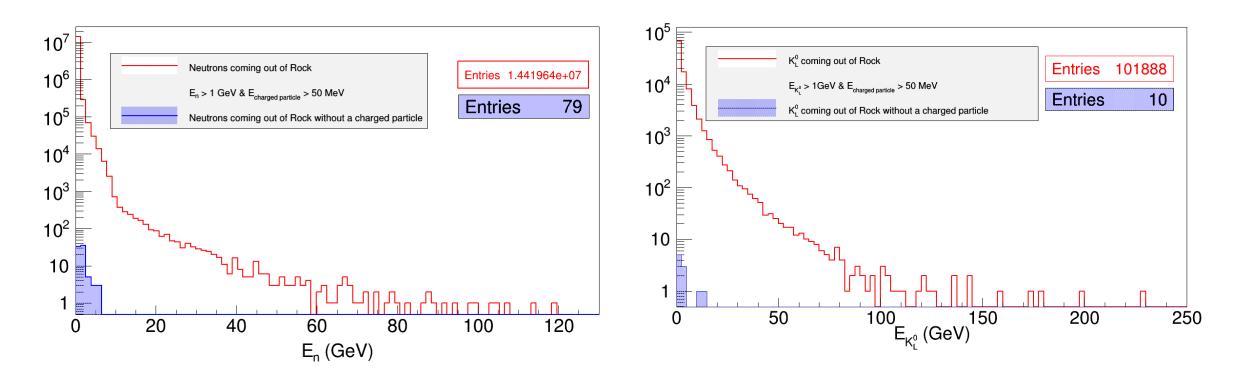
N. Panchal et al JINST **12**, T11002 (2017)

Proof-of-principle CMV detector with 3 layers of 1 cm thickness 5m×5m×2m (~2 tons) for mini-ICAL will be built with extruded plastic scintillator (Fermilab), 1.2mm WLS fibre and SiPM


Requirements for CMV detector for mini-ICAL

- \triangleright Size of CMV detector $\sim 5 \text{m} \times 5 \text{m} \times 2 \text{m}$
- No. of plastic scintillator (PS) layers : 3
- \triangleright Extruded PS dimensions: 5cm (W) \times 1cm (H) \times 5m (L)
- > 2 holes at centre 1.4 mm dia, 12.5 mm from side edge
- > WLS fibre 1.4mm diameter read out by SiPM at either end
- ➤ WLS length ~ 8 km, 3200 SiPMs
- > Electronics includes SiPM biasing, fast preamp and gain control

PS to be given at no cost for CMV detector by Fermilab, rest by INO Quotes for SiPM (Hamamatsu), WLS (Kuraray) received.


Simulating muon induced neutral particle production in rock (prelim. results)

- \triangleright Cosmic muons propagate through 100m rock undergoing only energy loss (10¹²)
- > In next 3m muons allowed to undergo nuclear interactions ($\sigma_{int} \times 100$) and all particles propagated ($\lambda_{had} \sim 0.4m$)

Particles	Fraction (%)
n	47.8
р	24.5
π+	12
π-	11.7
π ⁰	0.5
K ^o L	0.2
K ^o s	0.3
K ⁺	0.3
K-	2.3
μ+	0.3
Σ0	0.09
η ⁰	0.07

Energy spectra of neutrons and K⁰_L

For 10^{10} muons # of neutrals, with no accompanying charged particles (E > 50 MeV), leave rock & produce a track (\geq 5 layers): $1.5 \times 10^7 \times 10^{-4} \times 2 \times 10^{-3} = 3$

 \Rightarrow For ${\sim}10^8$ muons/day on 100m deep ICAL bkgd events ${\sim}0.03/$ day, while N $_{\rm atm}\,_{\rm V}\,\sim 3/$ day

Preliminary simulations show promise!

In summary.....

- Mini-ICAL close to being set up
- Shallow depth ICAL appears to be promising

Mini-ICAL team members:

BARC: Sourabh Pathak, Sandip Patel, S. Ajith, N.S. Dalal, S.P. Prabhakar, T.S. Sreenivasan, D.N. Badodkar (DRHR), S.P. Srivastava, K.N. Karn, P.I. Hadagali, P.K. Biswas, Alok Tripathi, Sachin Dolas, Prabhat Singh, Vinay Sharma, Sanjay Patil, Suresh Jaiswar (CDM), R. Rengan, K. Srinivas (CED), S. Achrekar, N. Ayyagiri, A. Behere, V.B. Chandratre, D. Das, A. Jain, N. Kamble, T. Kasbekar, H. Kolla, A.Manna, S. Mohanan, S. Moitra, P.M. Nair, S. Padmini, M. Punna, S.M. Raut, S. Prafulla, S. Sikder, M. Sukhwani (ED), P.S. Shetty, B. Sivaramakrishna, Mathew Dominic, Shashank Padwal (TSD)

ECIL: M. Thomas

IIT (M): S. Aniruddhan, N. Chandrachoodan, Chitra, N. Krishnapura, P. Kumar, P. Abinaya, A. Prabhakar

SINP: N.K.Mondal

TIFR: B.S. Acharya, Vishal Asgolkar, Rajkumar Bharathi, Apoorva Bhatt, Santosh Chavan, S. Dasgupta, V.M. Datar, Upendra Gokhale, Darshana Gonji, S.R. Joshi, Suresh Kalmani, Puneet Kaur, A. Lokapure, G. Majumder, Suryanarayan Mondal, P. Nagaraj, Neha, Pathaleswar, S. Pethuraj, K.C. Ravindran, Mandar Saraf, B. Satyanarayana, Ravindra Shinde, Dipankar Sil, Thoi Salam Singh, N. Sivaramakrishnan, Pavan V., L. Umesh, Suresh Upadhya, Piyush Verma, E. Yuvaraj

VECC: S.K. Thakur, A. Bera, A. Ghosh, Noor Mohamed

Visva-Bharati: S. Karmakar, T.K. Kundu, M. Maity, M. Rahaman, S. Roy

Mini-ICAL Design Safety Review Committee of BARC Safety Council for their suggestions

Essar Steel (steel plates), Green & Green (assembly), St. Gobain (RPC gaps), Ferrite India (Pune), BEC (Bhilai), Entech (B'luru)

Thank you