

Probing radiative and electroweak penguins at Belle II

Soumen Halder On behalf of TIFR Belle (II) group

BSM search via rare B decays

- b ≫ s (d) is an FCNC transition, which is not allowed at tree level in the standard model (SM)
 - both loop and CKM suppressed (BF ~ 10^{-6})
- BSM models allowing FCNC at tree level or new particles appearing in loop can change decay branching fractions and/or other observables

Lepton family universality test

$$R_{K}[q_{0}^{2},q_{1}^{2}] = rac{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} rac{d\Gamma(B o K\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} rac{d\Gamma(B o Ke^{+}e^{-})}{dq^{2}}}$$

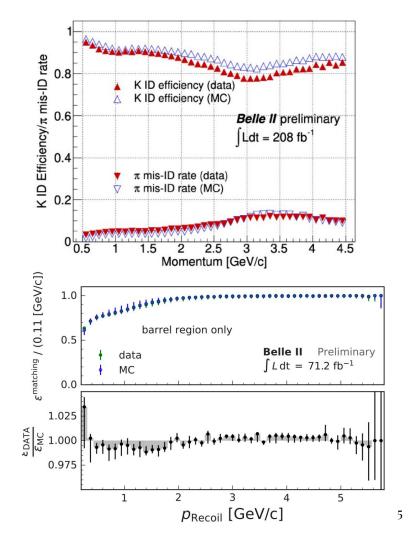
- In SM gauge bosons couple equally to different lepton flavours.
- Precise prediction of R_K ratios in SM (~1%). Results are mostly driven by LHCb
- Away from SM by 3.1 standard deviations at the low q² bin
 - Angular observables like P_5' expected to be theoretically robust¹ Tension in this variable 2.9 σ (LHCb measurement²)
 - •
 - Belle³ has already measured for both electron and muon mode, •
 - Bonus LFU observables : $Q_5 = P_5^{\prime \mu} P_5^{\prime e}$ Ο

¹ JHEP 05 (2013) 137 ² PRL 125, 011802 (2020) ³ PRL 118, 111801 (2017)

Asymmetry measurement

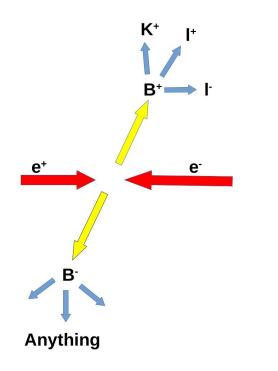

$$A_{ ext{CP}} = rac{\Gamma(ar{B}
ightarrow ar{K}^* \gamma) - \Gamma(B
ightarrow K^* \gamma)}{\Gamma(ar{B}
ightarrow ar{K}^* \gamma) + \Gamma(B
ightarrow K^* \gamma)}$$

$$\Delta_{+0} = rac{\Gamma(B^0 o K^{*0} \gamma) - \Gamma(B^+ o K^{*+} \gamma)}{\Gamma(B^0 o K^{*0} \gamma) + \Gamma(B^+ o K^{*+} \gamma)}$$


- SM prediction of branching fraction suffers from large uncertainties due to form factors.
- Observables like CP (A_{cp}) and isospin (Δ_{+o}) asymmetries are theoretically clean due to cancellation of these form factors.
- The latest measurement by Belle¹ found evidence of isospin violation at a significance of 3.1 standard deviations.
- Inclusive measurements^{2,3} of B $\rightarrow X_s \gamma$ provide a strong constraint on the charged Higgs mass⁴
 - $M(H^+) > 580 \text{ GeV at } 95\% \text{ CL}$

¹ T. Horiguchi et. al. Phys. Rev. Lett. 119 (2017) 19, 191802
 ² Phys. Rev. D 91 052004 (2015), ³arXiv: 1608.02344
 ⁴O. Deschamps et al. Phys. Rev. D 82 073012 (2010)

Belle II performance



- Good performance for lepton and hadron ID, as well as for photon reconstruction
- Still room for improvement, to be achieved with larger dataset

B meson reconstruction

A schematic $B \twoheadrightarrow KII$ event at Belle II

- Selecting final-state particles :
 - Charged track candidates are identified using the information from particle identification subdetectors
 - \circ γ candidates are reconstructed from ECL clusters with several shower shape variables
- Composite particles:
 - K^{*}, Ks candidates are reconstructed by combining 4 momenta of their final-state decay products.
 - Further selection on the invariant mass, vertex fit quality variables etc. applied
 - For exclusive analysis, we use following two kinematic variables to select B candidates

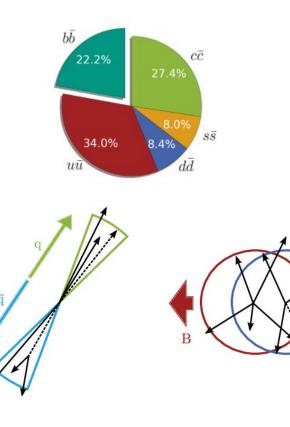
$$\Delta E = E_B^* - E_{
m beam}^*$$
 $M_{
m bc} = \sqrt{E_{
m beam}^{*2} - p_B^{*2}}$

Major backgrounds: a quick glance

Background event	Nature	Suppression strategy
Continuum ($e^+e^- o qar q$)	Combinatorial	BDT based MVA

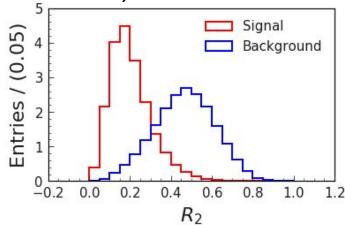
 $B \rightarrow \mathbf{K}^* \gamma$

π^0/η faking γ candidate	Peaking	BDT based MVA
$B \to X_{s+d} \gamma$	Peaking	Irreducible background
$B \to K^{\star n} \gamma$	Peaking	Irreducible background

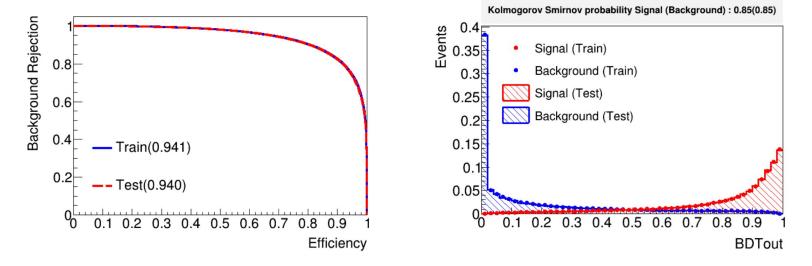

B → J/ψK Peaking Mass veto Semi-leptonic B Combinatorial BDT based MVA decays $\pi^0 \rightarrow e^+ e^- \gamma$ Combinatorial Mass veto and $\gamma^* \rightarrow e^+e^ B \rightarrow D(K\pi)\pi$ Peaking Mass veto $B \rightarrow K^{*}\pi$ and Peaking Irreducible B → Kρ background

 $B \rightarrow KII$

7

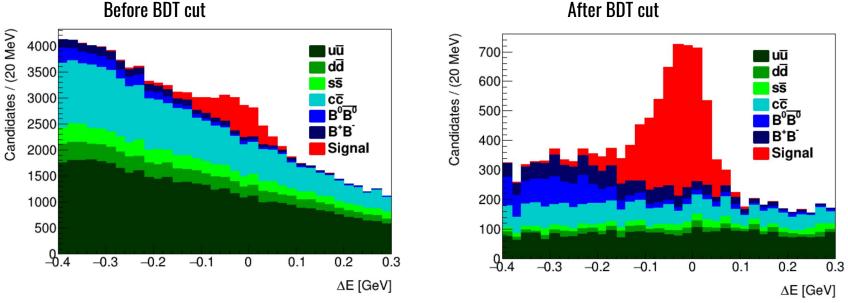

Continuum ($q\bar{q}$) background and its suppression

Event shape variables as the discriminator



- Boosted decision tree (BDT) to suppress background from light quark (u, d, s and c) events, denoted as qq
- The BDT was trained using variables exploiting the topological differences between signal and background events.

Example of a discriminating variable R₂ (Ratio of second to zeroth order Fox-Wolfram moments)

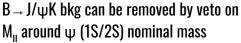


Performance of the MVA

- Independent classifiers are used to train each mode separately
- ROC integral for both signal and background are almost same (no overtraining)

Optimization of BDT cut to suppress background

After BDT cut


- Optimize the FOM = S/ $\sqrt{(S+B)}$ in signal region
- More than 90% background suppressed at the cost of 7-15% signal. •

Other background suppression

Backgrounds suppression for $B \rightarrow KII$

5

- ΔE and M_{bc} help to distinguishing various combinatorial backgrounds
- Typically $\Delta E \in [-0.3, 0.3]$ GeV and $M_{bc} \in [5.2, 5.29]$ GeV/c² applied
- Further cuts are applied depending on the mode and signal extraction procedure.

P+P-

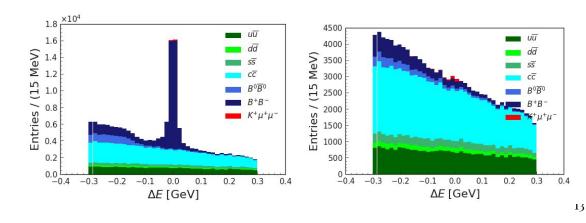
 $\times 10^4$

3.5

3.0

2.5

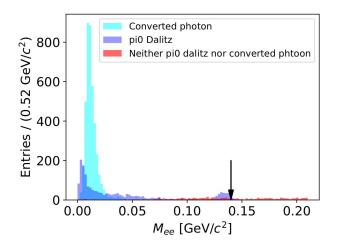
1.0

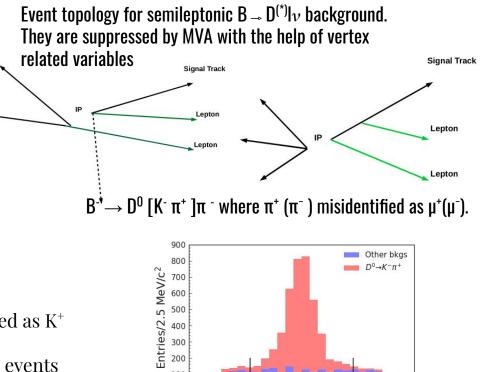

0.5

0.0 -1

GeV)

Entries / (0.1


 $M_{e^+e^-}[\text{GeV/c}^2]$


Distribution of $\triangle E$ before (left) and after (right) $\psi(1S/2S)$ veto

Backgrounds suppression for B 🗳 KII: contd..

 $\begin{array}{l} M_{ee} > 0.14 \; GeV/c^2 \; is \; applied \; to \; suppress \; \pi^0 \; \twoheadrightarrow \; e^+ e^- \gamma \\ Dalitz \; decay \; and \; photon \; conversion \; events. \end{array}$

- B \Rightarrow KJ/ $\psi(\mu\mu)$ where $\mu^+(\mu^-)$ misdentified as K⁺ (K⁻) and vice versa \Rightarrow double misID
- Reduce contamination from B \Rightarrow K^{*} $\ell\ell$ events by requiring $\Delta E > -0.1$ GeV

100

1.83

1.84

1.85

1.86

 $M_{K^+\mu^-}[\text{GeV/c}^2]$

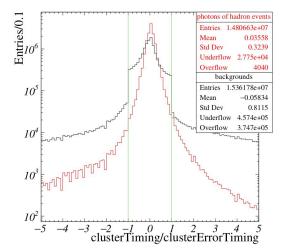
1.87

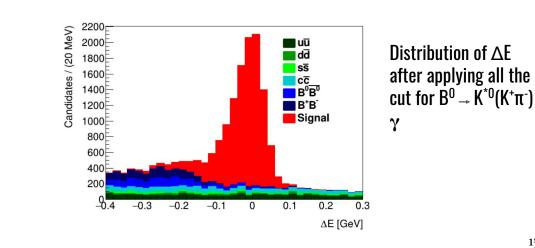
1.88

1.89

14

1.90

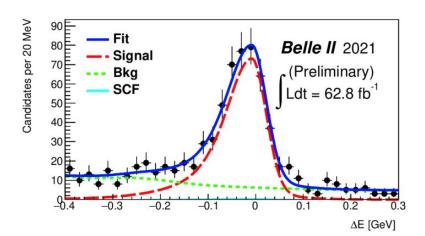

Background suppression for $B \rightarrow K^* \gamma$


Asymmetric decays of $\pi^0 \rightarrow \gamma\gamma$, $\eta \rightarrow \gamma\gamma$ where the hard gamma fakes signal candidate.

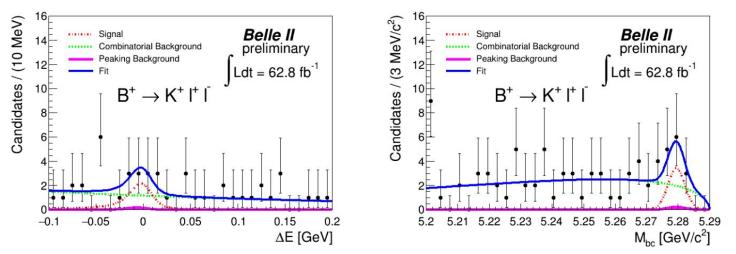
MVA trained to discriminate photons coming from hadronic B decays vs. π^0/η

Mbc peaking backgrounds

- Quark fragmentation channels $\widetilde{B}^+ \rightarrow X_{su}^+ \gamma$ and $B^o \rightarrow X_{sd}^0 \gamma$ Self-crossfeed signal events
- Decays of higher resonances like $K_n^* \gamma$ Events evading the π^0/η veto (MVA
- classifier)



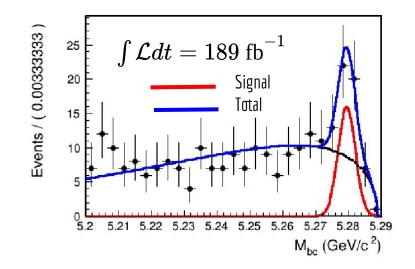
Signal extraction


Signal extraction for $B \rightarrow K^* \gamma$

- Signals are extracted using an unbinned maximum likelihood fit to $\Delta E-M_{bc}$ 2D distribution (**Kll** and **K***ll)or to the ΔE distribution with signal-region criteria applied on M_{bc} (**K*** γ)
- Signal, background and peaking (SCF) are three components in likelihood fit

Fit to data ΔE distribution for $B^0 \rightarrow K^{*0}(K^*\pi^-)\gamma$. This result is approved by Belle II and published in <u>arxiv-2110.08219</u>

Signal extraction for $B \rightarrow KII$



Signal enhanced projection of 2D fit along ΔE (left) and M_{bc} (right). $\Delta E \in [-60, 40]$ MeV applied while plotting M_{bc} , and $M_{bc} \in [5.27, 5.29]$ GeV/c² applied while plotting ΔE

- Signal yield: 8.6 $^{\rm +4.3}_{\rm -3.9}$ ±0.4 (statistical and systematic uncertainty).
- Significance: 2.7 standard deviations

This result was shown in Moriond QCD (2021)

Signal extraction for $B \rightarrow K^*II$

 $\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}$ $\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}$ $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}$

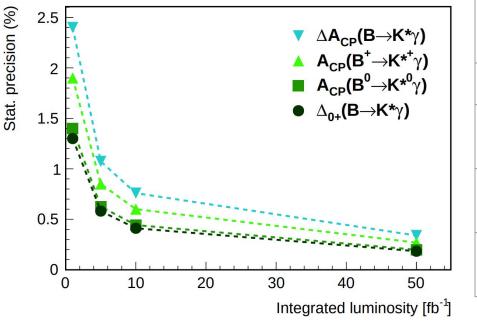
- Measurement is limited by sample size
- N_{BB} and π⁰ identification are the most dominant systematic uncertainty (~3%)

This result was shown in Moriond EW (2022)

Observable calculation

Branching Fraction

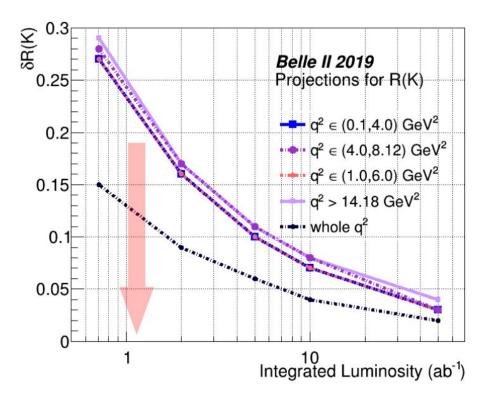
For calculating the branching fraction in data, we use the following relation:

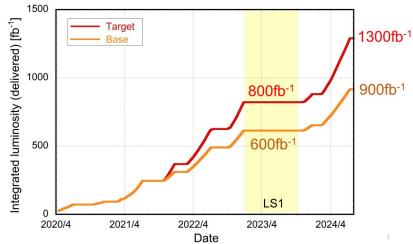

 $\mathcal{B} = \frac{\text{Yield}}{N_{B\overline{B}} \times 2 \times f^{+-/00}(f^{00/+-}) \times \epsilon} \bullet N_{BB}: \text{Number of BB pairs, for the current dataset} \\ \bullet \epsilon: \epsilon_{MC} \times f_{data/MC}, \\ \circ \epsilon_{MC} \text{ is selection efficiency in MC} \\ \circ f_{data/MC} \text{ is correction between data and MC} \\ \circ f_{data/MC} \text{ is correction between data and MC} \\ \text{through particle ID, MVA classifier efficiency} \\ \text{etc.} \end{cases}$

Mode	Signal yield	Signal efficiency (%)	B.F (Fit) $\times 10^{-5}$
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	454 ± 28	15.2	$4.5\pm0.3\pm0.2$
$B^0 \to K^{*0}[K^0_S \pi^0] \gamma$	50 ± 10	1.7	$4.4\pm0.9\pm0.6$
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	169 ± 18	4.8	$5.0\pm0.5\pm0.4$
$B^+ \to K^{*+} [K^0_S \pi^+] \gamma$	160 ± 17	4.2	$5.4\pm0.6\pm0.4$

MVA selection, π^0/η selection are the dominant source of systematics (~4%)

Results are consistent with PDG within uncertainty


Future prospects (radiative B decays)



Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

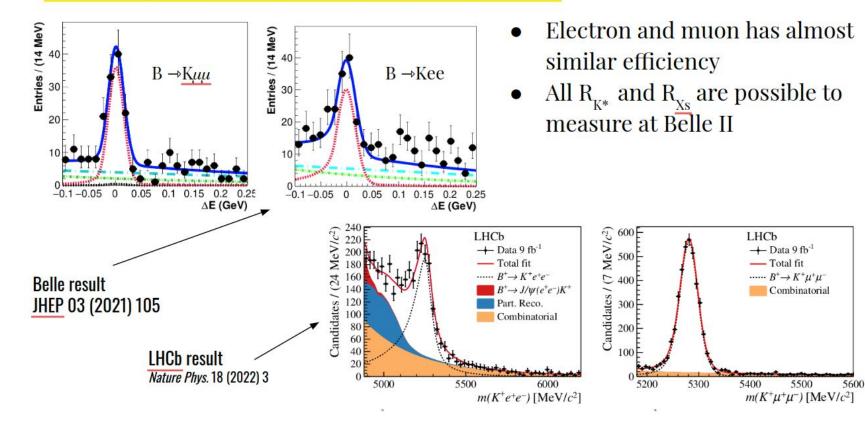
Observable	Belle II (50 ab ⁻¹) Stat.	Belle II (50 ab ⁻¹) Syst.		
$\Delta_{0^+}(B \mathbin{{\scriptstyle\rightarrow}} K^*\gamma)$	0.20%	0.30%		
$ A_{cp}(B^+ \rightarrow K^{*+}\gamma) $	0.20%	0.20%		
$(B^0 \to K^{*0}\gamma)$	0.30%	0.15%		
$\Delta A_{cp}(B \to K^*\gamma)$	0.30%	0.25%		
) • Major source of improvement in				
systematics uncertainty at Belle II:				
photon reconstruction (2% \rightarrow <1%)				

Future prospects (R_K)

• Belle has collected 712 fb⁻¹ data during its lifetime

• By the long shutdown (June 2022), Belle II will collect roughly similar dataset.

 \bullet Combining both the data samples, we expect to provide a competitive result for $R_{\rm K}$



- Focused on some recent Belle II EWP studies where our group has directly contributed
- Clean environment at Belle II grants us access to unique observables in rare B decays
- Belle II has continued to record data during Covid-19 pandemic
- Stay tuned for interesting results from Belle II

Thank you for attention

Advantages of LFV analyses @e⁺e⁻ collider

