GRB 151006A: In the context of Radiation mechanism in GRBs

Wide Band Spectral & Timing Studies of Cosmic X-ray Sources TIFR, January 13, 2017

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- **Single pulse:** Crider+97; Ghirlanda+03; Ryde 04, Ryde & Pe'er 09: Thermal emission.

GRB Radiation

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- **Single pulse:** Crider+97; Ghirlanda+03; Ryde 04, Ryde & Pe'er 09: Thermal emission.
- Fermi era: wider band. Variety of models Ryde+10; Guiriec+11,13; Axelsson+12; Basak & Rao 13, 14; Burgess+14; Iyaani+15 (spectrum with two humps or broad top)
- Statistically difficult, **Novel strategy:** Exploit capabilities of different detectors at different phases

Swift XRT (~200 eV @6 keV)

Rupal Basak, NCAC, Warsaw

GRB Radiation

Example GRB I

2. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB Radiation

Example GRB I

2. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB Radiation

Example GRB I

2. GRB 090618 (Basak & Rao 2015a, ApJ)

GRB Radiation

3. GRB 130925A (Basak & Rao 2015b), **An ultra-long GRB**

Debate: (1) GRB or a **TDE**? HST image shows 600 pc offset from the host. But, morphology of the host indicates recent major merger. Combined study of X-ray and host galaxy

(2) Emission: **Single BB:** Bellm+14 ~5 keV, Piro+14 ~0.5 keV, **Dust scattering**: Evans+14

GRB Radiation

GRB 151006A: The First Astrosat detected GRB

- Astrosat: Successfully launched on 28 Sept, 2015.
- Cadmium Zinc Telluride Imager (CZTI) started operating from 6 Oct 2015
- GRB 151006A detected on **the first day.**
- Spectral, timing and image: comparable results with Swift and Fermi.
- Polarization measurement, for the first time for such a faint burst.

Rupal Basak

GRB 151006A

Spectral Evolution of GRB 151006A

GRB 151006A

Late time spectrum with XRT and BAT

CZTI Collaboration (in prep)

GRB 151006A

Long term Evolution

CZTI Collaboration (in prep)

GRB 151006A

What makes the jump in the spectral evolution?

• A start of the afterglow phase?

• A second hard pulse not seen in the otherwise smooth profile?

• In any case, it is unusual

CZTI Collaboration (in prep)

What makes 2BBPL: spine-sheath jet

Other groups:

Ito + 13: Simulation in a stratified jet. Found the double hump and non-thermal component. Iyyani + 15: Comptonization of thermal photons that mimics the shape.

GRB Radiation

A common Feature?

GRB 090618 (Basak & Rao 2015a, ApJ)

Ultraluminous X-ray sources (Kajava & Rico-Villas 2016)

Soft Gamma Repeaters

Spine-sheath jet: e.g., Powerful blazars (Ghisellini 2005).

A very recent image of M87 jet. (K. Hada, Malaga conference) Info: 15 GHz, VLBA, pc scale.

Rupal Basak, NCAC, Warsaw

GRB Radiation

Lessons learnt from GRB 151006A

- There could be surprises even in single pulse GRBs.
- GRB 151006 is unusua
- How can CZTI contribute?
 - Will require brighter GRBs. Not very rare.
 - Current sample 40 detections. 9 with significant polarization.
 - Interesting cases: two >3sigma detections. One very high, other very low.
 - Statistical sample: polarization degree and angle.

Toma+09: Predicted polarization (50-500 keV) w.r.t E_{p}

GRB Radiation