Search for electroweak SUSY production at CMS

L. Thomas, on behalf of the CMS Collaboration

University of Florida

Dec 14th, 2017

L. Thomas (UF)

• Natural way to look for SUSY at hadron colliders: Target strong SUSY production in purely hadronic final states and E_T^{miss} .

ightarrow Limits set on squarks/gluinos typically \geq 1 TeV.

- Searches presented here do the exact opposite: Target electroweak SUSY production with lepton(s) and E_T^{miss} .
 - Much weaker cross sections and therefore exclusion limits.
 - Naturalness typically constraints Higgsino masses more than gluino/squark.
 - In some cases, this searches allow to probe directly Higgs couplings to SUSY.

- Focus on CMS results targeting electroweakinos pair production → see I. Babounikau's talk for searches for direct slepton production at CMS.
- Rich phenomenology depending on mass spectrum, nature/stability of the LSP.
- Three final states reviewed (all with full 2016 dataset: 35.9 fb⁻¹, $\sqrt{s} = 13$ TeV)
 - 1 lepton +2 b-tagged jets + E_T^{miss}
 - 2 opp. charge and same flavor leptons + jets + E_T^{miss}
 - Multi leptons + E_T^{miss}
- Combination of Electroweakino searches at CMS.
 - All analyses above sensitive to $ilde\chi_2^0 ilde\chi_1^\pm o (ilde\chi_1^0 Z/H)(ilde\chi_1^0 W)$
 - Also includes:
 - soft opp. sign dilepton pair $+E_T^{
 m miss}$ (ightarrow see N. Rad's talk)
 - $H(b\bar{b}) H(b\bar{b}) + E_T^{miss}$ (\rightarrow see H. Kirschenmann's talk)
 - $H(\gamma\gamma) + E_T^{miss}$ (\rightarrow see V. Hegde's talk)

1 lepton +2 b-tagged jets + E_T^{miss} CMS-SUS-16-043

- Event selection:
 - =1 lepton (e/ μ), p_T > 30/25 GeV and $|\eta|$ <1.44/2.1
 - =2 b-tagged jets with $ho_{T}>$ 30 GeV and 90 $<\!M_{bar{b}}\!<\!$ 150 GeV
 - $E_T^{\rm miss}$ >125 GeV
 - Second lepton (incl. au) veto.
 - $M_T = \sqrt{2p_T^l E_T^{\text{miss}}(1 \cos{(\Delta \phi_l)})} > 150 \text{ GeV}$ (endpoint at m_W for single leptonic W processes)
 - $M_{CT} = \sqrt{2p_T^{b1}p_T^{b2}(1 + \cos{(\Delta\phi_{bb})})} > 170$ GeV (endpoint at m_t for dileptonic $t\bar{t}$)

L. Thomas (UF)

- Backgrounds:
 - Mostly dileptonic tt, W+jets (splitted between light/heavy flavours).
 - Erom simulation

 - Three sets of control regions (CR): 0 b-jets, =21, $M_{b\bar{b}} \notin$ [90-150]. Shape of key variables validated in CR with relaxed M_T , M_{CT} ("preselection") conditions
 - Systematic uncertainties assessed from CR with same M_T , M_{CT} conditions as SR.

- Results and interpretation:
 - Selected events splitted in two $E_{\tau}^{\rm miss}$ > bins: 125-200, >200 GeV.
 - Scan in the $m_{\tilde{\chi}_2^0/\tilde{\chi}_1^\pm}$ vs $m_{\tilde{\chi}_1^0}$ plane.
 - Exclusion limits in the range 200 $< m_{\tilde{\chi}_{1}^{0}/\tilde{\chi}_{1}^{\pm}} <$ 500 GeV.

 $E_T^{\rm miss}$ >200 GeV

2 opp. charge and same flavor leptons + jets + E_T^{miss} CMS SUS-16-034

- Targets SUSY scenarios with onshell Z bosons and extra jets.
- Also target strong SUSY production →see L. Vesterbacka's talk
- Event selection:
 - 2 same flavor leptons (e/μ) with $p_T>$ 25, 20 GeV
 - \geq 2 jets with p_T > 35 GeV
 - $86 < M_{II} < 96 \text{ GeV}$
 - $E_T^{\rm miss}$ >100 GeV
 - $M_{T2}(II) > 80$ GeV (endpoint at M_W for WW, $t\bar{t}$).
 - various SR in bins of $E_T^{\rm miss}$
- Two exclusive set of signal regions:
 - VZ: 0 b-tagged jets
 - HZ: 2 b-tagged jets

			1 (Electroweak-production on-Z (86 $< m_{\ell\ell} < 96$ GeV) signal regions						
Region 1	Njets	N _{b-jets}	Dijet mass [GeV]	<i>M</i> _{T2} [GeV]	p ^{miss} binning [GeV]					
VZ	≥ 2	=0	$m_{jj} < 110$	$M_{T2}(\ell\ell) > 80$	100–150, 150–250, 250–350, >350					
HZ	≥ 2	=2	$m_{\rm bb}^{-} < 150$	$M_{\text{T2}}(\ell b \ell b) > 200$	100-150, 150-250, >250					

- Main backgrounds:
 - flavor symmetric (FS) backgrounds (*tī*, *WW*, *tW*,...): data driven, from opp. flavor control regions.
 - Z+jets with instrumental E_T^{miss} data driven, templates from γ +jets.
 - ZZ: Monte Carlo validate in WZ(31v) enriched control region.
 - Z+jets normalized to data yields in the $E_T^{\rm miss}$ 50-100 control region.
- Interpretation:
 - Limits on $m_{\tilde{\chi}^0_2/\tilde{\chi}^\pm_1}$ up to 600 GeV.

- Event selection
 - \geq 3 | with $p_T \gtrsim$ 15/10/20 GeV ($e/\mu/\tau_h$) or same sign (SS) $ee/\mu\mu/e\mu$ pair
 - At least one light I (e/μ) with $p_{\mathcal{T}} \gtrsim 25$ GeV.
 - $E_T^{\text{miss}} > 50 \text{ GeV}$.
 - \leq 1 jet with p_T >30 GeV.
- Various event categories (A-K), depending on $e+\mu$ and τ multiplicity, presence of an opp. sign $ee/\mu\mu$ (OSSF) pair.

Category	SS	А	В	С	D	E	F	G-K
$N(e+\mu+\tau_h)$	2	3	3	3	3	3	3	\geq 4
$N(e+\mu)$	2	3	3	2	2	2	1	≥ 2
$N(\tau_h)$	0	0	0	1	1	1	2	0,1, 2
(SS) $ee/\mu\mu/e\mu$ pair	1	0	1	0	0	1 SF	/	/
OSSF $ee/\mu\mu$ pair	0	1	0	1	0	0	1	$0,1,\geq 2$

• SR then defined in bins of various kinematic variables: E_T^{miss} , M_T , M_{II} , M_{T2} ,...

Multi leptons + E_T^{miss} CMS-SUS-16-039/17-004

- Category A $(N(e+\mu)=3, N(\tau_h)=0, 1 \text{ OSSF pair})$ by far the most sensitive to flavor democratic signals with uncompressed mass spectra.
- Sensitivity drop when: $m_{\tilde{\chi}_{y}^{0}/\tilde{\chi}_{z}^{\pm}} m_{\tilde{\chi}_{y}^{0}} \approx M_{Z}$ ("WZ corridor")
- Additional binning in H_T (scalar p_T sum of jets with $p_T > 30$ GeV) introduced in CMS-SUS-17-004 to target strong ISR.
- Found to improve discriminating power at high $E_{ au}^{
 m miss}$

10 / 15

Multi leptons + E_T^{miss} CMS-SUS-16-039/17-004

- Same Sign category to target compressed mass spectra
 - One lepton is soft and not reconstructed

11 / 15

Model	Categories used
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A
$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.05 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	SS, A
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.95 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	SS, A
$\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.05 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.95 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -dominated, $m_{\tilde{\tau}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	B–F
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ production, heavy sleptons, $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow WZ$	A
$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, heavy sleptons, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WH$	SS, A–K
$\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow ZZ\tilde{G}\tilde{G}$	A–K
$\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow HZ\tilde{G}\tilde{G}$	A–K
$\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow HH\tilde{G}\tilde{G}$	A–K
Electroweaking searches at CMS Dec	14th 2017

- Same Sign category to target compressed mass spectra
 - One lepton is soft and not reconstructed
- N(τ_h) = 1,2 categories designed to target signals with enhanced couplings to τ, e.g.:
 - $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm}$ production with \tilde{I}_R mediated decays: τ favoured via higgsino component of $\tilde{\chi}_1^{\pm}$. τ enriched scenario.
 - Decoupled first and second generation of sleptons/sneutrinos.
 - au dominated scenario.
 - Allows one to also probe final states with Higgs bosons.

11 / 15

	CMS 35.9 fb ⁻¹ (13 TeV)		Model	Categories used
A 4	$pp \rightarrow \chi^{\pm}_{\tau} \chi^{0}_{\tau} \rightarrow \bar{\tau} v \bar{\tau} \tau$	â	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A
Ő	$BR(\tilde{\chi}_{2}^{0} \rightarrow \tau \bar{\tau})=1, m_{\tau} = 0.5m_{\chi_{1}^{+}}+0.5m_{\chi_{2}^{-}}$	u (F	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.05 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	SS, A
ĔŇ	Expected ± 1 σ _{theory} NLO-NLL excl.	ecti	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, flavor-democratic, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0}^0 + 0.95 \cdot (m_{\tilde{\chi}_2^0}^0 - m_{\tilde{\chi}_1^0}^0)$	SS, A
3		285 5	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.05 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
		55	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
2		nit oi	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -enriched, $m_{\tilde{\ell}} = m_{\tilde{\chi}_1^0} + 0.95 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	A, C
		-il-	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, τ -dominated, $m_{\tilde{\tau}} = m_{\tilde{\chi}_1^0} + 0.5 \cdot (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0})$	B–F
1		렵	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ production, heavy sleptons, $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow WZ$	А
		5	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production, heavy sleptons, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WH$	SS, A–K
		95%	$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ production, $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow ZZ\tilde{G}\tilde{G}$	A–K
	200 400 600 10	₇₃ 00	$\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow HZ\tilde{G}\tilde{G}$	A–K
	m _{Z1} =m _{Z2} (GeV)		$\tilde{\chi}_1^0 \tilde{\chi}_1^0$ production, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow HH\tilde{G}\tilde{G}$	A–K
	Thomas (UE)		Electroweaking searches at CMS	14th 2017

Combination of Electroweakino searches at CMS. CMS-SUS-17-004

• Six analyses entering the combination.

	Signal topology					
Search	WZ	WH	ZŽ	ZH	HH	
1ℓ 2b		√				
4b					\checkmark	
2ℓ on-Z	 ✓ 		\checkmark	√		
2ℓ soft	\checkmark					
$2\ell SS, \geq 3\ell$	 ✓ 	\checkmark	\checkmark	√	\checkmark	
$H(\gamma\gamma)$		\checkmark		\checkmark	\checkmark	

• Targeted models involve lightest neutralino or gravitino scenarios as LSP.

L. Thomas (UF)

Electroweakino searches at CMS

Combination of Electroweakino searches at CMS. CMS-SUS-17-004

- Each of the presented searches drives the sensitivity for \$\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm} → (\tilde{\chi}_1^0 Z/H)(\tilde{\chi}_1^0 W)\$ in some region of the mass spectrum or for a specific H/Z branching ratio.
- \bullet Excluded mass range extended by pprox 50 GeV in a large fraction of the phase space.

L. Thomas (UF)

Electroweakino searches at CMS

- Combination also made for a GMSB scenario with $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow (\tilde{G} + H/Z)(\tilde{G} + H/Z)$
- Limit parametrized vs $Br(ilde{\chi}_1^0 o ilde{G} + H)$
- Combination significantly extends the limit and fills some holes.
- Higgsino masses below 600 GeV fully excluded in this model.

- Despite their low cross section, direct production of electroweakinos offers an alternative way to strong production for SUSY to reveal itself at the LHC.
- A broad variety of final states and phase space regions were considered by CMS.
- Recent results on the full 2016 dataset now surpass exclusion limits from Run 1 by a large margin.
- Complementarity between various analyses/final states allows us to significantly improve the exclusion range when combining.
- More results in the pipeline and full 2017 (and 2018 !) dataset still to be analyzed.

References:

- Search for electroweak production of charginos and neutralinos in the WH final state in proton-proton collisions at at $\sqrt{s} = 13$ TeV, CMS-PAS-SUS-16-043
- Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at √s = 13 TeV, CMS-SUS-16-034
- Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \sqrt{s} = 13 TeV, CMS-SUS-16-039
- $\bullet\,$ Combined search for electroweak production of charginos and neutralinos in pp collisions at $\sqrt{s}=$ 13 TeV CMS-PAS-SUS-17-004

 M_{T2} definition

$$M_{\text{T2}}^2 = \min_{\vec{p}_{\text{T1}}^{\text{miss}} + \vec{p}_{\text{T2}}^{\text{miss}} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\{M_{\text{T}}^2(\vec{p}_{\text{T}}^{\ell_1}, \vec{p}_{\text{T1}}^{\text{miss}}), M_{\text{T}}^2(\vec{p}_{\text{T}}^{\ell_2}, \vec{p}_{\text{T2}}^{\text{miss}})\} \right]$$

L. Thomas (UF)

- $WZ/W\gamma^*$ background
 - From simulation, normalized in control region with 31, low M_T , moderate $E_T^{\rm miss}$ (<100 GeV).
 - M_T tails dominated by lepton mispairing in $eee/\mu\mu\mu$ channels, validated in $ee\mu/e\mu\mu$ channels.
 - Instrumental $E_T^{
 m miss}$ validated with $W+\gamma$ events.

Fakes:

- Jet misidentified as leptons or non prompt lepton from decays of heavy flavour hadrons.
- Dominant for categories with $\geq 1\tau_h$.
- Data driven (based on the jet fake rate measured in jet dominated sample).

• Conversions:

- $Z \rightarrow 4$ due to internal/external FSR conversion.
- One of the lepton is lost
- Verified in data CR with $|M_{3I} M_Z| < 15$ GeV, $|M_{II} M_Z| > 15$ GeV.
- Charge mismeasurement
 - Relevant only for electrons.
 - Validated in data CR $M_{e^{\pm}e^{\pm}}$ in the Z peak region.

WZ corridor signal regions

• SRA: 3 light leptons (e/μ) , with an OSSF pair.

$m_{\ell\ell}$ (GeV)	$M_{\rm T}$ (GeV)	$p_{\rm T}^{\rm miss}$ (GeV)	$H_{\rm T} < 100 {\rm GeV}$	$100 < H_{\rm T} < 200 {\rm GeV}$	$H_{\rm T} > 200 {\rm GeV}$	
0 – 75	0-100	50 - 100				
		100 - 150		SR 12		
		150 - 200				
		> 200		SR 04		
	100 - 160	50 - 100		SR 13		
		100 - 150				
		> 150				
		50 - 100		SR 08		
	> 160	100 - 150		SR 14		
	> 100	150 - 200		51(14		
		> 200		SR 11		
		50 - 100	(WZ CR)	SR 27	SR 40	
	0-100	100 - 150	SR 15	SR 28	51(40	
		150 - 200	SR 16	SR 29	SR 41	
		200 - 250	SR 17	SR 30	on II	
		250 - 350	SR 18	SR 31	SR 42	
		> 350	UNIO	onor	SR 43	
	100 - 160	50 - 100	SR 19	SR 32	SR 44	
		100 - 150	SR 20	SR 33	SR 45	
75 - 105		150 - 200	SR 21	SR 34	SR 46	
		200 - 250			SR 47	
		250 - 300	SR 22	SR 35	SR 48	
		> 300			SR 49	
		50 - 100	SR 23	SR 36	SR 50	
		100 - 150	SR 24	SR 37	SR 51	
	> 160	150 - 200	SR 25	SR 38	SR 52	
		200 - 250	00.04	070.000	SR 53	
		250 - 300	SR 26	SR 39	SR 54	
		> 300			SK 55	
	0 - 100	> 50		SR 56		
> 105	100 - 160	> 50				
	> 160	> 50		SR 58		

L. Thomas (UF)

Electroweakino searches at CMS

Systematic uncertainties: effect on yields

Source	Typical values [%]
Integrated luminosity	2.5
Size of MC samples	2-60
Pileup	1-5
Renormalization and factorization scales	1-3
ISR modeling	1-5
b tagging efficiency	1-3
Lepton efficiency	2-5
Trigger efficiency	1-5
Jet energy scale	1-40
Fastsim E _T ^{miss} resolution	1-50

1 lepton +2 b-jets + E_T^{miss}

Source of uncertainty	Uncertainty (%)
Integrated luminosity	2.5
Lepton reconstruction and isolation	5
Fast simulation lepton efficiency	4
b tag modeling	0-5
Trigger modeling	3
Jet energy scale	0-5
ISR modeling	0-2.5
Pileup	1-2
Fast simulation p_T^{miss} modeling	0-4
Renorm./fact. scales	1-3
Statistical uncertainty	1-15
Total uncertainty	9-18

2 OSSF e/μ + jets + E_T^{miss}

L. Thomas (UF)