# Analyzing signals of compressed spectra in SUSY

#### Juhi Dutta

Harish Chandra Research Institute Allahabad, India

December 12, 2017



JHEP 01 (2016) 051, JHEP 09 (2017) 026 with P. Konar, S. Mondal, B. Mukhopadhyaya, S.K. Rai

• Compressed spectra in MSSM

- with <sup>χ</sup><sup>0</sup><sub>1</sub> LSP.
  with <sup>G</sup><sub>G</sub> LSP.
- Signals & Results
- Conclusions

## Compressed spectra

- Compressed spectra has relatively closely spaced sparticles.
- Such a spectrum produces softer jets, leptons and missing transverse energy → may not pass the signal selection criterions leading to weak bounds on such spectra.



- Most studies in this direction focus on simplified models with a squark or gluino compressed with the LSP and rest of the spectrum decoupled.



# Case I: Compression in MSSM

Non-universal SUSY breaking at high scale could give rise to a compressed spectrum with masses of gluinos, squarks, sleptons close to the  $\tilde{\chi}_1^0$  LSP.





• At 1-loop order, the lightest CP-even Higgs mass is:

$$m_h^2 = m_z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v^2} \ln\left(\frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} - \frac{X_t^4}{12M_S^2}\right)$$

where  $M_{S}=\sqrt{m_{\widetilde{t}_{1}}m_{\widetilde{t}_{2}}},~X_{t}=A_{t}-\mu\coteta$ 

Require atleast one heavy stop as well as large mixing  $X_t$  in the stop sector to fit  $122 < m_h < 128$  GeV.

- LEP lower bound on the lightest chargino mass, i.e,  $m_{\widetilde{\chi}^1_+} > 103.5~{\rm GeV}.$
- Constraints from branching ratios of rare decays such as  $BR(b \rightarrow s\gamma)$  and  $BR(B_s \rightarrow \mu\mu)$ .
- For parameter scans, we have considered only the upper bound on dark matter relic density, i.e,  $\Omega h^2 < 0.138$ .
- Constraints from direct detection cross-sections ( $\sigma_{SI}$ ) from LUX data.



$$\Delta M = m_{S} - m_{\widetilde{\chi}_{1}^{0}},$$
  

$$S \in [\widetilde{g}, \widetilde{t}_{2}, \widetilde{b}_{2}, \widetilde{\tau}_{2}, \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{\pm}]$$

Heavy spectra and large  $\mu$  parameter facilitates compression  $(\Delta M)$  in the spectra.



 $\widetilde{\chi}_1^0$  LSP and cold dark matter candidate, satisfies observed thermal relic density.

Low  $\mu$  values, (~ 2 TeV) strongly constrained from direct detection cross-section data from LUX due to large bino-higgsino mixing.

# Case II: Compression in MSSM + $\widetilde{G}$ LSP

• We focus on a compressed MSSM spectra with a bino-like  $\tilde{\chi}_1^0$  NLSP extended with a keV gravitino LSP.



• Presence of light  $\widetilde{G}$  relaxes DM constraints on  $\widetilde{\chi}_1^0$ .

# Branching ratios of $\widetilde{g}$

• 
$$\Gamma(\widetilde{g} \to g\widetilde{G}) \propto m_{\widetilde{g}}^5 m_{\widetilde{G}}^{-2}$$

• Competing decay modes:  $\widetilde{g} o g \widetilde{G}$  ,  $\widetilde{g} o q ar{q} \widetilde{\chi}_1^0$ 



- Small compression ( $\Delta M \sim 50 \text{ GeV}$ ) and  $m_{\widetilde{G}} \sim 1 \text{ keV}$  : BR( $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_1^0$ ) > BR( $\widetilde{g} \rightarrow g \widetilde{G}$ ).
- Large compression ( $\Delta M \sim 10$  GeV) and  $m_{\widetilde{G}} \sim 1$  keV: BR( $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0}$ ) < BR( $\widetilde{g} \rightarrow g \widetilde{G}$ ).
- For sub-keV  $\widetilde{G}$ : BR( $\widetilde{g} \to g \widetilde{G}$ ) dominant.

# Branching Ratios of $\widetilde{q}_L$ , $\widetilde{q}_R$

• 
$$\Gamma(\widetilde{q} 
ightarrow q\widetilde{G}) \propto m_{\widetilde{q}}^5 m_{\widetilde{G}}^{-2}$$

• Competing decay modes:  $\widetilde{q} o q \widetilde{G}$  ,  $\widetilde{q} o q \widetilde{\chi}_1^0$ 



- Small compression and  $m_{\widetilde{G}} > 1 \text{ eV} : \text{BR}(\widetilde{q} \to q \widetilde{\chi}_1^0) > \text{BR}$  $(\widetilde{q} \to q \widetilde{G}).$
- Large compression and  $m_{\widetilde{G}} > 1 \text{ eV}$ :  $\mathsf{BR}(\widetilde{q} \to q \widetilde{\chi}_1^0) < \mathsf{BR}(\widetilde{q} \to q \widetilde{G})$ .
- For sub-eV  $\widetilde{G}$ : BR $(\widetilde{q} \rightarrow q\widetilde{G})$  dominant.

The bino-like \$\tilde{\chi\_1}^0\$ NLSP decays dominantly to \$\gamma\$ and \$\tilde{G}\$ and a small fraction to \$Z + \$\tilde{G}\$. This leads to extremely hard photons and large \$\mathcal{E}\_T\$.



 These hard photon associated signals can be very effective to probe a heavy compressed SUSY spectra with a light gravitino as there would be rarely any Standard Model events with such hard photons. We consider the following signals at  $\sqrt{s}=13~{\rm TeV}$  for our study :

- Monojet +  $\not\!\!\!E_T$
- Multijets ( $\geq 2 j$ ) +  $\not \in_T$

## Simulation Details

### **SUSY signal**: $\tilde{q}\tilde{g}$ , $\tilde{q}\tilde{q}$ , $\tilde{q}\tilde{q}^*$ , $\tilde{g}\tilde{g} + \leq 2$ partons.

- Spectrum Generator: SPheno
- Madgraph5 → Pythia6 → Delphes-v3 for event generation, showering and detector simulation.
- MLM matching with showerKT performed duly with QCUT = 120 GeV (SUSY), 30-50 GeV (SM).

#### **Background:**

- MSSM:  $Z + \leq 4j$ ,  $W + \leq 4j$ ,  $QCD (\leq 4j)$ ,  $t\overline{t} + \leq 2j$ ,  $t + \leq 3j$ ,  $ZZ + \leq 2j$ ,  $WZ + \leq 2j$ .
- $MSSM + \tilde{G}$ : from existing ATLAS study, i.e. ATLAS-CONF-2016-066.

Signal cross-sections computed at NLO (NLO+NLL) for MSSM (MSSM+ $\tilde{G}$ ) using Prospino (NLL-Fast). Background cross-section upto NLO (using Madgraph5) for MSSM.

## Benchmarks

| Parameters                                | BP1     | BP2    |
|-------------------------------------------|---------|--------|
| $A_t$                                     | -1535.1 | 2300.0 |
| $\mu$                                     | 3000.0  | 3000.0 |
| aneta                                     | 23.9    | 20.0   |
| $m_{\widetilde{g}}$                       | 1497.4  | 1534.7 |
| $m_{\widetilde{q}_L}$                     | 1452.3  | 1524.5 |
| $m_{\widetilde{q}_R}$                     | 1451.3  | 1520.8 |
| $m_{\tilde{t}_1}$                         | 1330.6  | 1507.6 |
| $m_{\tilde{t}_2}$                         | 1509.0  | 1686.6 |
| $m_{\widetilde{b}_1}$                     | 1407.4  | 1521.9 |
| $m_{\tilde{b}_2}$                         | 1494.5  | 1619.5 |
| $m_{\widetilde{\chi}_1^0}$                | 1323.9  | 1496.3 |
| $m_{\widetilde{\chi}_{2}^{0}}$            | 1342.9  | 1559.0 |
| $m_{\widetilde{\chi}_1^\pm}$              | 1342.9  | 1559.1 |
| $m_h$                                     | 122.5   | 122.4  |
| $\Omega h^2$                              | 0.113   | 0.105  |
| $\sigma_{\it SI} 	imes 10^{11}~{ m (pb)}$ | 4.65    | 0.13   |
| $\Delta M_i$ (GeV)                        | 173.5   | 38.4   |

 $\Delta M_i = m_{\mathcal{S}} - m_{\widetilde{\chi}^0_1}$ , where  $\mathcal{S} \in [\widetilde{q}, \widetilde{g}]$ 

#### 

| Signal        |                   | Cross-section after cuts (fb) |                  |                   |                           |                                  |  |
|---------------|-------------------|-------------------------------|------------------|-------------------|---------------------------|----------------------------------|--|
| Benchmark     | Production        | Preselection                  | M <sub>Eff</sub> | ₹⊤                | $\not \in_T / \sqrt{H_T}$ | ∉ <sub>T</sub> /M <sub>Eff</sub> |  |
| Points        | cross-section(fb) |                               | > 800 GeV        | $> 160 { m ~GeV}$ | $> 15 GeV^{1/2}$          | > 0.35                           |  |
| BP1           | 126.93            | 59.72                         | 20.74            | 19.84             | 9.99                      | 9.93                             |  |
| BP2           | 95.58             | 12.45                         | 6.34             | 6.24              | 4.72                      | 4.68                             |  |
| SM Background | 2.0E+08           | 253042                        | 2833             | 8.85              | 1.36                      | 1.35                             |  |

#### Multijets $+ \not \in_T$ cross-section for signal and background (at NLO).

(Preselection:  $p_T(j_1) > 130 \text{ GeV}, p_T(j_2) > 80 \text{ GeV}, \Delta \phi(j_{1/2}, \not \!\!\! E_T) > 0.4)$ 

| Signal        |                   | Cross-section after cuts ( fb) |                               |                             |  |
|---------------|-------------------|--------------------------------|-------------------------------|-----------------------------|--|
| Benchmark     | Production        | Preselection                   | <i>∉<sub>T</sub></i> >160 GeV | $M_{Eff} > 800 \text{ GeV}$ |  |
| Points        | cross-section(fb) |                                |                               |                             |  |
| BP1           | 126.93            | 12.06                          | 8.22                          | 0.88                        |  |
| BP2           | 95.58             | 7.48                           | 6.20                          | 1.63                        |  |
| SM background | 2×10 <sup>8</sup> | 46254                          | 2602                          | 0.938                       |  |

Monojet  $+ \not \in_T$  cross-section for signal and background (at NLO).

|                                               | Luminosity (in $fb^{-1}$ ) for $3\sigma$ excess |      |  |
|-----------------------------------------------|-------------------------------------------------|------|--|
| Signal                                        | BP1                                             | BP2  |  |
| $Multijets \ (\geq 2 \ j) + \not\!\!\! E_{T}$ | 123                                             | 558  |  |
| $Monojet + \not\!\!\! E_T$                    | 10926                                           | 3204 |  |

- Multijet + met searches still more efficient to look for compressed scenarios than traditional monojet + met channels.
- However both are viable modes of discovery for compressed spectra at the Run 2 of LHC.

# Signals and Results (for MSSM extended with a $\widetilde{G}$ LSP)

We consider the following signal:

• 
$$\geq 1\gamma + > 2j + \not \in_T$$

Experimental collaborations (ATLAS-CONF-2016-66) consider signal events coming from gluino pair production only, assuming rest of the sparticles decoupled, ruling out  $m_{\widetilde{g}} \leq 1.95$  TeV for  $m_{\widetilde{\chi}_1^0} \sim 1.8$  TeV.



- However for a compressed spectra, presence of closely spaced sparticles lead to added contributions to the same final state.
- Thus, the limits on sparticles are stronger for a compressed spectra.

Using the ATLAS analysis for  $\geq 1\gamma + > 2$  jets  $+ \notin_T$  and SM background estimates at 13.3  $fb^{-1}$ , mass bounds significantly increase for a compressed spectra, i.e.,  $m_{\tilde{g}/\tilde{q}} \geq 2.5$  TeV.

Hard photons are a characteristic feature of both compressed and uncompressed spectra.

## Benchmarks

|                                               | Compressed spectra |       | Uncompressed spectra |
|-----------------------------------------------|--------------------|-------|----------------------|
| Parameters                                    | C4                 | C5    | U2                   |
| A <sub>t</sub>                                | -3750              | -3197 | 2895                 |
| $\mu$                                         | 4000               | 3500  | 3000                 |
| aneta                                         | 6                  | 25    | 15                   |
| M <sub>A</sub>                                | 1800               | 2500  | 2500                 |
| $m_{\widetilde{g}}$                           | 2783               | 2562  | 2102                 |
| $m_{\tilde{q}_L}$                             | 2753               | 2571  | 4721                 |
| $m_{\widetilde{q}_R}$                         | 2751               | 2574  | 4742                 |
| $m_{\tilde{t}_1}$                             | 2625               | 2532  | 4678                 |
| $m_{\tilde{t}_2}$                             | 2863               | 2718  | 4765                 |
| $m_{\tilde{b}_1}$                             | 2778               | 2594  | 4558                 |
| $m_{\tilde{b}_2}$                             | 2846               | 2677  | 4744                 |
| $m_{\widetilde{\chi}_1^0}$                    | 2585               | 2526  | 1191                 |
| $m_{\widetilde{\chi}_{0}^{0}}^{\chi_{1}^{0}}$ | 2724               | 2619  | 2383                 |
| $m_{\widetilde{\chi}_1^{\pm}}$                | 2724               | 2619  | 2382                 |
| m <sub>h</sub>                                | 124                | 125   | 125                  |
| $\Delta M_i$                                  | 198                | 48    | 911                  |

Using the existing ATLAS analysis cuts (using hard cuts on photon  $p_T$  and  $\not \in_T$ ) and SM background estimates at 13.3  $fb^{-1}$  for the same final state:

| Signal    |                   | Cross-section (in fb) after cuts |             |                                    |                                     |       |                  |
|-----------|-------------------|----------------------------------|-------------|------------------------------------|-------------------------------------|-------|------------------|
| Benchmark | Production        | $p_T(\gamma_1)$                  | $N_j > 2$   | $\Delta \phi(j_{1/2}, \not \in_T)$ | $\Delta \phi(\gamma_1, \not \in_T)$ | Ĕτ    | M <sub>Eff</sub> |
| Points    | cross-section(fb) | > 400                            | $N_{I} = 0$ | > 0.4                              | > 0.4                               | > 400 | > 2000           |
| C4        | 0.21              | 0.15                             | 0.12        | 0.08                               | 0.08                                | 0.08  | 0.07             |
| C5        | 0.49              | 0.34                             | 0.15        | 0.13                               | 0.13                                | 0.12  | 0.11             |
| U2        | 0.20              | 0.13                             | 0.12        | 0.10                               | 0.09                                | 0.08  | 0.08             |

we compute the required luminosity for some benchmarks:

| Signal    | Luminosity ${\cal L}$ (in fb $^{-1}$ ) for |                       |  |
|-----------|--------------------------------------------|-----------------------|--|
|           | $S = 3\sigma$                              | $\mathcal{S}=5\sigma$ |  |
| C4        | 176                                        | 489                   |  |
| <b>C5</b> | 79                                         | 219                   |  |
| U2        | 139                                        | 385                   |  |

Using  $p_T(\gamma)$ ,  $p_T(j)$  and  $N_j$ , a set of new kinematic variables identified which act as a discriminant for a compressed and uncompressed spectra with similar event rates:

$$r'_1 = N_j r_1, r'_2 = N_j r_2, \text{ where } r_1 = \frac{p_T(j_1)}{p_T(\gamma_1)}, r_2 = \frac{p_T(j_2)}{p_T(\gamma_1)}$$

For C4, C5:  $r'_1 \sim 0.2 - 0.5$ ,  $r'_2 \sim 0.1 - 0.3$  while for U2:  $r'_1 \sim 4$ ,  $r'_2 \sim 2.5$ .



# Conclusions

- Compressed spectra in MSSM with <sup>~</sup>χ<sup>0</sup><sub>1</sub> LSP gives rise to multiple jets and ∉<sub>T</sub> which fare better over traditional monojet and ∉<sub>T</sub> signal.
- We further extend the MSSM spectra with a light G̃. Presence of a light G̃ relaxes DM constraints on the MSSM part of the spectrum.
- With existing data, exclusion limits on colored sparticles improve significantly for a compressed spectra in photonic channels.
- Hard photons are a characteristic feature of both compressed and uncompressed spectra. Simlar event rates may be obtained for compressed and uncompressed spectra.
- Difference in compression reflected in kinematic variables involving hardness of photons, jet and jet multiplicity to distinguish such spectra.
- For sub-keV gravitinos,  $\widetilde{G}$  associated decay mode of the sparticles become relevant and alternate channels of interest are multi-jets and missing energy signals requiring  $\sim 1000 \, fb^{-1}$  for observing a  $3\sigma$  excess at LHC.

#### Thank You

## Backup

| Parameters      | Ranges                                               |
|-----------------|------------------------------------------------------|
| $M_1, M_2, M_3$ | (100, 2500) GeV                                      |
| $A_t$           | (-3000, 3000) GeV                                    |
| taneta          | (2, 50)                                              |
| $M_L = M_R$     | $(M_1, M_1 + 200) \text{ GeV}(\text{if } M_1 < M_2)$ |
|                 | $(M_2, M_2 + 200) \text{ GeV}(\text{if } M_2 < M_1)$ |

Table : Ranges of the relevant parameters for the scan.  $M_1$ ,  $M_2$ ,  $M_3$  are the gaugino mass parameters, varied in the same range but independent of each other.  $M_L$  and  $M_R$  are the left-handed and the right-handed soft mass parameters of squarks and sleptons.

## Differential distributions of kinematic variables

