

Experimental status of $b \to (s, d) \nu \overline{\nu}$ decays

Pablo Goldenzweig KIT

CKM 2016

TIFR, Mumbai, India 28 Nov. - 2 Dec., 2016

- Theoretical motivation
- Existing measurements
- Belle's new measurement of $b \to (s, d) \nu \overline{\nu}$ with the semileptonic tagging method
- Interpretation and comparison to existing measurements.

Introduction

- Flavor changing neutral currents forbidden at tree level make $b \to (s, d)\nu\overline{\nu}$ highly suppressed.
- Theoretical calculations of \mathcal{B} cover the range: $2.4 \times 10^{-7} \ (\pi^+ \nu \overline{\nu}) \Rightarrow 9.2 \times 10^{-6} \ (K^{*+} \nu \overline{\nu}),$ where the $B \to (\pi, \rho) \nu \overline{\nu}$ decays are further suppressed by a factor of $|V_{td}/V_{ts}|^2$. JHEP, 02:184 (2015), PRD 92, 074020 (2015)
- Theoretically clean due to a maximum of one electromagnetically interacting charged particle in the final state, as opposed to $K^{(*)}l^+l^-$ decays.
- Several new physics models (SUSY, non-standard Z coupling) could enhance these decays.

One-loop box (top) and electroweak penguin (bottom) for $b \to s \nu \overline{\nu}$ decays

Experimental status

1.12.2016 4 / 15

P. Goldenzweig

 $b \to (s, d) \nu \overline{\nu}$

New measurement of $B \rightarrow h^{(*)}\nu\overline{\nu}$ with the semileptonic tagging method with the full Belle dataset of $772 \times 10^6 B\overline{B}$ pairs

 $h^{(*)}=K^+,\,K^0_S,\,K^{*+},\,K^{*0},\,\pi^+,\,\pi^0,\,
ho^+,\,
ho^0$

Belle Full Reconstruction method

Typical B factory event

- Hierarchical reconstruction of the B_{tag} using NeuroBayes¹.
- Check if the remaining particles in the detector are consistent with the signal signature.

¹Nucl. Instrum. Meth. A654: 432 (2011)

Which tag-side reconstruction?

P. Goldenzweig

 $b \to (s, d) \nu \overline{\nu}$

Reconstruction I

This semileptonically tagged sample provides a statistically independent and more efficient sample of reconstructed $B\overline{B}$ events as compared to the hadronically tagged sample.

Tag semileptonic *B*-decay: Combine D^{*+} and oppositelycharged lepton candidates and calculate the cosine of the angle between the *B* momentum and the D^*l in the $\Upsilon(4S)$ frame.

✓ tag candidates: $\cos \theta_{B-D^*\ell} \in [-1, 1]$

Output of the network used to identify real B_{tag} candidates (\mathcal{N}_{tag}) can be interpreted as the probability of the B_{tag} meson to be a real one in a generic sample.

P. Goldenzweig

Reconstruction II

- Reconstruct one light meson: K^+ , K_S^0 , K^{*+} , K^{*0} , π^+ , π^0 , ρ^+ , ρ^0 . Invariant mass window of K^* & ρ optimized via $N_S/\sqrt{N_S + N_B}$.
- No additional charged tracks or π^0 candidates left in the event.
- Veto events with reconstructed K_L candidates.
- Suppress $e^+e^- \to q\overline{q}$ background with a neural network using topological variables.

Fraction of events with multiple $\Upsilon(4S)$ candidates up to 20%. Best candidate taken to be that with the highest \mathcal{N}_{tag} , i.e., candidate with the highest probability for being correctly reconstructed.

Train a NN to separate signal		ε in 10^{-3}	exp. # of background
from background:	$B^+ \rightarrow K^+ \nu \bar{\nu}$	2.16	103.6
	$B^0 \rightarrow K^0_{\rm S} \nu \bar{\nu}$	0.91	22.4
• Optimize a cut on the network	$B^+ \rightarrow K^{*+} (\rightarrow K^+ \pi^0) \nu \bar{\nu}$ $B^+ \rightarrow K^{*+} (\rightarrow K^0 \pi^+) \nu \bar{\nu}$	0.25	11.1 24.1
output by maximizing a	$B^0 \to K^{*0} \nu \bar{\nu}$	0.52	24.1
Punzi-FoM:	$B^+ \to \pi^+ \nu \bar{\nu}$	2.92	474.0
	$B^0 \rightarrow \pi^0 \nu \bar{\nu}$	1.42	41.0
$\varepsilon / \left(\frac{n_{\sigma}}{2} + \sqrt{B} \right)$	$B^+ \rightarrow \rho^+ \nu \bar{\nu}$ $B^0 \rightarrow \rho^0 \nu \bar{\nu}$	$0.82 \\ 1.11$	62.4 172.5
. ,	- · · · · ·		

Signal extraction

Extract the signal yield by fitting the Extra Energy in the Calorimeter:

Sum of energies of neutral clusters not associated with reconstructed particles

$$E_{ECL} = \sum E_{Calor.} - (\sum E_{tag} + \sum E_{sig})$$

Extensive Toy MC studies performed to estimate sensitivity: 1K bkgd.-only samples generated and fit for yield estimate. Fit bias estimated from ensemble tests and corrected for in fit to data. (plot for $K^+ \nu \overline{\nu}$) Preliminary

Charm B decay & $q\overline{q}$ background for $K^+\nu\overline{\nu}$ in $E_{ECL} \in (0, 1.2)$ GeV.

Dominant $b \rightarrow c$ contribution from semileptonic B decays.

	contribution in %
continuum	22.6
2 leptons missing	15.3
$K_{\rm L}$ s and lepton missing	6.5
lepton and hadrons missing	24.1
2 charged hadrons missing	1.7
wrong B type	3.8
hadronic, K_L missing	24.1
hadronic π^0 missing	1.0
no match	0.0
other	1.0

Fit to data

Karlsruhe Institute of Technology

Extended binned ML fit to E_{ECL} :

- Histogram templates to model signal and bkgds from charm *B* decay, charmless *B* decay, and continuum.
- Relative fractions of the background components fixed to MC expectations.
- Signal and overall background yield allowed to vary.

hannel	Observed N_{sig}	Significance
(+ <i>vv</i>	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$(^0_S \nu \overline{\nu}$	$0.6 \pm 4.2 \pm 1.4$	0.0σ
$(\bar{*}^+ \nu \bar{\nu}$	$16.2 \pm 7.4 \pm 1.8$	2.3σ
$(*^0 \nu \overline{\nu}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$+\nu\bar{\nu}$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$v\bar{\nu}$	$0.2 \pm 5.6 \pm 1.6$	0.0σ
$+\nu\bar{\nu}$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$v\bar{\nu}$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

	$K^+ \nu \bar{\nu}$	$K^0_{ m S} \nu \bar{\nu}$	$K^{*+}\nu\bar{\nu}$	$K^{*0}\nu\bar{\nu}$	$\pi^+ u ar{ u}$	$\pi^0 \nu \bar{\nu}$	$\rho^+ \nu \bar{\nu}$	$\rho^0 \nu \bar{\nu}$
$K_{\rm L}^0$ veto	0.2	0.2	0.1	0.2	0.6	0.4	0.6	0.0
ixed fraction	0.4	0.3	0.1	0.2	1.3	0.1	0.1	1.0
continuum correction	2.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0
ag correction	0.5	0.2	0.1	0.1	1.9	0.1	0.2	0.5
shape uncertainty	2.6	1.3	1.8	1.7	4.5	1.5	2.3	3.4
it bias	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.2
otal	3.4	1.4	1.8	1.8	5.9	1.6	2.4	3.6

- Uncertainties related to the signal yield (table [absolute]) are estimated by refitting the data with each quantity varied by $\pm 1\sigma$, with the exception of the shape uncertainty which is evaluated from Toy MC studies.
- Remaining uncertainties include: π^0 and charged track veto (4%); raw track requirement (1%); particle ID efficiency (2%) π^0 efficiency (4%), K_S^0 efficiency (2.2%) $N_{B\overline{B}}$ (1.4%).

Preliminary

	Channel	Efficiency	Expected Limit	Measured Limit
	$K^+ \nu \bar{\nu}$	2.16×10^{-3}	$0.8 imes 10^{-5}$	1.9×10^{-5}
Expected (exp.) and	$K^0_{ m S} \nu \bar{\nu}$	$0.91 imes 10^{-3}$	1.2×10^{-5}	1.3×10^{-5}
observed upper limits	$K^{*+}\nu\bar{\nu}$	$0.57 imes10^{-3}$	$2.4 imes 10^{-5}$	$6.1 imes 10^{-5}$
at the 90% confidence	$K^{*0}\nu\bar{\nu}$	$0.51 imes 10^{-3}$	$2.4 imes10^{-5}$	$1.8 imes10^{-5}$
level (including systematic	$\pi^+ u ar{ u}$	$2.92 imes 10^{-3}$	$1.3 imes 10^{-5}$	$1.4 imes 10^{-5}$
iever (including systematic	$\pi^0 u \overline{ u}$	1.42×10^{-3}	$1.0 imes 10^{-5}$	$0.9 imes10^{-5}$
uncertainties)	$ ho^+ u ar{ u}$	1.11×10^{-3}	$2.5 imes 10^{-5}$	$3.0 imes 10^{-5}$
	$ ho^0 u \overline{ u}$	$0.82 imes 10^{-3}$	2.2×10^{-5}	$4.0 imes 10^{-5}$

Combine charged and neutral modes:

- The systematic uncertainties are evaluated on independent MC and data control samples for charged and neutral modes. \Rightarrow Can be considered uncorrelated.
- Add the $-\mathcal{L}$ and scale the \mathcal{B} of the neutral modes by τ_B^+/τ_B^0 and repeat the calculation of the limit:

$$\mathcal{B}(B \to K\nu\bar{\nu}) < 1.6 \times 10^{-5}$$
$$\mathcal{B}(B \to K^*\nu\bar{\nu}) < 2.7 \times 10^{-5}$$
$$\mathcal{B}(B \to \pi\nu\bar{\nu}) < 0.8 \times 10^{-5}$$
$$\mathcal{B}(B \to \rho\nu\bar{\nu}) < 2.8 \times 10^{-5}$$

Comparison with other measurements

Preliminary

Worlds most stringent limits obtained for: $B^0 \to K^0_S \nu \overline{\nu}, \ B^0 \to K^{*0} \nu \overline{\nu}, \ B^{+/0} \to \pi^{+/0} \nu \overline{\nu}, \ B^{+/0} \to \rho^{+/0} \nu \overline{\nu}$

P. Goldenzweig

1.12.2016 14 / 15

- ▶ New measurement of $\mathcal{B}(B \to h^{(*)}\nu\overline{\nu})$ with the semileptonic tagging method by Belle.
- Highest significance in the $B \to K^{*+} \nu \overline{\nu}$ channel (2.3 σ).
- ▶ Worlds best limits set on $B^0 \to K^0_S \nu \overline{\nu}, B^0 \to K^{*0} \nu \overline{\nu}, B^{+/0} \to \pi^{+/0} \nu \overline{\nu}, \text{ and } B^{+/0} \to \rho^{+/0} \nu \overline{\nu}.$
- ▶ None of the limits excludes SM predictions and all leave room for contributions from new physics.
- ▶ To be submitted to PRD this month.
- \Rightarrow See talk by Saurabh Sandilya later this session on Belle II prospects for rare decays.