

LHCb: To Infinity and Beyond

LHCb Longterm Plans / Dreams

Chris Parkes on behalf of the LHCb Collaboration

LHCb Timeline

- LHC Run-I (2010-2013)
 - The results you know and love, several new this week
- LHC Run-II (2015-2018)
 - Trigger computing increased. First results...
- LHC Run-III, Run-IV (2021-2023, 2026-2029)
 - Major 'New' Experiment: LHCb Upgrade [Phase I(a), I(b)]
- LHC Run-V (2031-)
 - Major 'New' Experiment
 LHCb Upgrade Phase II
 - May be only general heavy flavour expt on this timescale

KKCS Physics Programme Limited by Detector

But **NOT** Limited by LHC

- Upgrade to extend Physics reach
 - Exploit advances in detector technology
 - -Displaced Vertex Trigger, 40MHz readout
 - Better utilise LHC capabilities
- Upgrade I(a/b) Collect >50 fb⁻¹ data
 L ~ 2x10³³ cm⁻² s⁻¹
- Upgrade II Collect > 300 fb⁻¹ data
- Modest cost compared with
- existing accelerator infrastructure

Upgrade I •HL-LHC not needed •But compatible With HL-LHC phase

Upgrade II • Utilise HL-LHC phase luminosities

LHC Schedule & LHCb

LHCb Upgrade I(a) 25ns readout, software only triggering

- Construction project on milestone schedule
- Prototypes exist for most major elements
- Major industrial orders
 placed
 Chris

Phase 1(b) – Consolidate & Enhance

- LS3: 2½ year shutdown in the middle of LHCb Upgrade I operations
 - Utilise this to consolidate upgrade experiment
 - Phase I(b), same luminosity
 - Enhance physics programme
 - Pathways to Phase II
 - Financial/ personnel resources limited

Same timescale:

Not many new toys

Phase 1(b) e.g. – Magnet Side Stations

 Improve tracking acceptance for low momentum particles
 Install tracking stations on the dipole magnet internal sides
 e.g. D*+→D π_s+, 40% extra slow pions

Phase 1(b) e.g. – E'magnetic Calorimeter

- Inner ECAL replacement required due to radiation damage
 - Partial replacement only
- Strong Physics Interest:
 γ,π⁰,e⁻
- Improve performance with new technologies ?
- Improve energy/position resolution
 - Reduced Moliere radius, cell granularity Chris Parkes, Mur

Phase II – Major new Upgrade

"Formal approval of High luminosity LHC...secures CERN's future until 2035" CERN DG, June 2016

Secure Flavour Physics future

Target Luminosity: > 300 fb⁻¹, > 2x10³⁴ cm⁻² s⁻¹ HL-LHC experiment: ~50 events/interaction pile-up

- 1. Physics case
- 2. LHC capabilities
- 3. Detector feasibility

Phase II – Major new Upgrade

3. Detector feasibility

Physics Case - ask the analysts....

Phase-2 upgrade: benchmarking topics

- CP violation in the interference between B_s mixing and decay
- CP violation in B_c and b-baryon decays
- CP violation in charm mixing and decay
- Determination of the angle γ
- Semileptonic asymmetries
- Electroweak penguin decays
- Rare and radiative decays
- Lepton universality tests
- Lepton flavour violation
- Search for Majorana neutrinos
- Forward Higgs production
- Dark photon searches
- Spectroscopy and exotic states
- V. Vagnoni, Theatre of Dreams, April 2016

Physics Case - ask the analysts....

Phase-2 upgrade: benchmarking topics

- CP violation i
- CP violation i
- CP violation i
- Determinatio
- Semileptonic
- Electroweak
- Rare and radi

Everything we currently do and a few more for good measure ixing and decay

Phase II towards SM sensitivity for **H→cc**?

Dark photon A'**→**μμ

best sensitivity

Physics: Very Rare Decays Examples

- CLFV decays strong interest: Neutrino mass linked to SM Higgs ?
- τ→μμμ: a classic e+e- B-factory mode
- Phase II LHCb precision comparable with Belle II ~ $O(10^{-9})$
- Future Charm Rare Decays
 e.g. D⁰→I⁺I⁻, D_(s)⁺→h⁺I⁺I⁻, D⁰→h⁺h⁻I⁺I⁻
 with I⁺= μ⁺ and e⁺

Next Target:

$$\mathsf{R}=\mathsf{BR}(\mathsf{B}_{\mathsf{d}} \rightarrow \mu^{+}\mu^{-})/\mathsf{BR}(\mathsf{B}_{\mathsf{s}} \rightarrow \mu^{+}\mu^{-})$$

 $\sigma(\mathbf{R})/\mathbf{R}$ < 10% for Phase II

300 fb⁻¹ 2400 B_s and 240 B⁰ Effective lifetime ~ 2% Test for CPV

CPV Examples

Time dependent measurements

 more difficult in high pile-up environment

- Tree level determination of γ
- Phase II: 0.1° uncertainty in reach !

- $\phi_s \text{ in } b \rightarrow c \underline{c} s \ (B_s \rightarrow J/\psi X...)$
- Phase II: 4 mrad
 - SM level !
- $\phi_s \text{ in } b \rightarrow s \underline{s} \underline{s} (B_s \rightarrow \phi \phi)$
- Phase II: 7 mrad
- Charm: y,A_Γ,ΔA_{CP} no limiting systematics known
- Observe SM level CPV

Accelerator: Can LHCb Phase II run ?

Riccardo de Maria @ Theatre of Dreams (April 2016)					Preliminary	
Levelled luminosity LHCb [10 ³⁴ cm ⁻² s ⁻¹]	Opt fill length (IPI/5) [h]	Integrated luminosity ATLAS/ CMS [fb ⁻¹ /y]	Integrated Iuminosity LHCb [fb ⁻¹ /y]	β* IP8 [m]	Levelling time IP8 [h]	
0.2 (nom.)	9.3	261	10.4	3	9	
2	8.5	253	70	I	2	

• LHCb collect > 50 fb⁻¹ per year without affecting ATLAS/CMS

- LHCb IP not designed for HL-LHC experiment
 - Inner Triplet quadropole need
- to be replaced at ~300 fb⁻¹
 - Probably prohibitively expensive
- LHC side impressive studies on
- additional requirements
 - No showstoppers !

Vertex Detector: VELO

Radiation Damage

- Dose at 10¹⁷ 1 MeV n_{eq} / cm² level for full lifetime
- Replace / increase inner radius
- Pile-up
 - Mismatch b/c decays to wrong PV
 - -4D: Timing at 200ps level required

Particle Identification: RICH

- Granularity
- Phase II RICH I peak occupancies would exceed 100%.
 - Increase pixel granularity 7mm² → 1mm²
- Time resolution
 - Disentangle busy events
- Use B-field insensitive photodetectors
 - SiPM or MCP
- Concepts for improving
- Optical and chromatic uncertainty
- Equip central region
 for Phase 1(b) ?

LHCb Statistics- Timeline

LHCb Statistics- Timeline

Adjustment for 7/813/14 TeV cross-sections

LHCb Statistics- Timeline

Assumptions made on relative trigger efficiencies have significant uncertainty

Summary - Take Home Message

- 2021: LHCb Upgrade I construction on track
- 2025: Phase I(b) Upgrade: consolidate & enhance
 - Same luminosity as upgrade phase 1(a)
- 2030: Phase II Upgrade
 - Challenging project
 - Physics systematic / theoretical limit not reached
 - Detector timing information may be key to coping with pile-up
 - Factor ten increase in luminosity
 - LHC can provide

Backup

LHCb Upgrade I(a)

- Letter Of Intent, 2011
- Framework Technical design Report 2012
- Subsystem TDRs, 2014

- Funding largely in place from end 2014
 - Upgrade I(a) Construction
 - Assumed ~ 10 years running

Trigger Evolution – Upgrade I

LHCb Upgrade I 25ns readout, software only triggering

Upgrade I – Beyond the Energy Frontier

- Hardware 1st Level Trigger
 → Fully Software Trigger
- Increase Lumi to 2×10³³ cm⁻²s⁻¹ to collect 50 fb⁻¹
- General purpose detector in forward region

LHCb Upgrade I - Status

- Construction project on milestone schedule
- Prototypes exist for most major elements
- Engineering Design Reviews being conducted
- Major industrial orders placed

LHCb Upgrade I: Vertex Locator

LHCb Upgrade I: Upstream Tracker

- Silicon detector before magnet
 - Critical for tracking in trigger

-101-101-101-101-101-

Staves: bare stave PRR 🗸

Peripheral electronics: EDR 🗸

- Sensors: pre-PRR
- SALT 128
- Hybrids
- Flex cables

Type A -190µm pitch

ASIC (SALT) 8 channel version tested. Full-scale version received last month. Production Q2 2017

Box: EDR 🗸

LHCb Upgrade I : Scintillating Fibre Tracker

Bumps in fibre within spec."debumping" procedure applied

Fibre positions in spec.
Cold box for SiPM EDR

- Mat made from
 - 250µm diameter fibres
 - SiPM readout
- Mat production underway
- 11,000 km fibre !
 - 1300km received

LHCb Upgrade I : **RICH 1&2**

- π/K separation critical to physics
- MaPMT pre-series received and qualified
 - mass production to start

Mechanics EDR 🗸

Flat mirror reflectivity prototype exceeds spec.

4x EC

Chris Parkes, Aix-les-Bains, October 2016

LHCb Upgrade I : Calorimeters

- 1st level hardware trigger role removed
- ...but intriguing hints of Lepton non-universality (also physics with π^0 , radiative decays)
- further emphasize need for good ECAL

Innermost Cell replacement not needed till LS3

- Reduce gain by factor five, compensate in FE elec.
- Planning for initial layer (SPD/PS) dismantling (not needed in trigger)

LHCb Upgrade I: Muon

- New off-detector readout for 40MHz
- Additional shielding

New Off Detector electronics ASIC (nSync) under test

> FE control & test board (nSB) prototype produced

MWPC spares production almost complete

E

LHCb Upgrade I: Online & Computing

 Pioneering using reconstruction in trigger in Run2 to reduce event size (online calibration "turbo" stream)

Physics: Charm mixing & CPV

- Negatives:
- Lower momentum, shorter lifetime than B-sector
- Positives:
- y,A_Γ,ΔA_{CP} no limiting systematics yet known
 2014 2019 2024 2029 2034
 20000
 D to Kπ tagged
 0

~30MHz of charm events produced in acceptance!

Observe SM level CPV at LHCb Phase II Upgrade

LHCb Trigger: the key to higher Lumi

 Aim: Increase integrated luminosity from 2 fb⁻¹ to 5 fb⁻¹ per year Increase instantaneous luminosity to 2x10³³ cm⁻² s⁻¹

Current First Trigger Level: Hardware Muon/ECAL/HCAL 1.1 MHz readout

Performance: Muon channels scale Hadronic channels saturate bandwidth

• No gain in hadronic channels with current trigger

Solution: Upgrade to 40MHz readout

- Read out full detector at 40MHz
 - Major detector changes
 - Front-end electronics must change
- Use fully software trigger
 - Increased flexibility
- Maintain (improve) current detector performance
 - At increased multiple
 Interactions
 - Occupancies
 - Radiation damage

Phase 1(b) Upgrade Ideas

- Improving the muon shielding by replacing HCAL with iron
- Building new, high rate, muon chambers for busy regions
- Replacing central region of RICH1 photodetector plane with new high granularity SiPMs
- Replacing inner SciFi modules with SciFi/ silicon
- Adding side chambers in magnet
- TORCH for fast-timing and PID purposes
- Replacing some of ECAL with high performant technology

Physics Performance Assumptions

- Run-2
 - Cross-section increases linearly with \sqrt{s}
 - Non-muon trigger efficiency suffers from tighter thresholds, but benefits from increased trigger eff.
 - 1.75 fb⁻¹ per full year, ~5fb⁻¹ in total for run II
- Upgrade Phase I
 - Removal of hardware trigger brings factor 2 efficiency boost for non-muon triggered events
 - 5fb⁻¹ per year
- Upgrade Phase II
 - Same trigger eff. as upgrade (an upper limit?)
 - 50 fb⁻¹ per year

Sources of Charm

Offline selected D* tagged

Hadronic B decays Not only useful to measure CKM γ Also revealed first spin-3 charm state

 \rightarrow LHCb collaboration, Phys. Rev. Lett. 113 (2014) 162001

Physics Coverage / Limitations

- Inclusive charm trigger selections are not feasible
 - Upgrade I will produce 800 kHz of analysable charm-hadron events
 - 80 GB/s with current data format hence turbo stream approach
 - can keep 2-10 GB/s for ALL LHCb physics
- Have to decide in advance what to keep
 - Cabibbo favoured modes prescaled ?
 - Purely exclusive selection trigger is offline selection
- Limits of physics programme not yet reached
 - Use of neutrals
 - understanding production/detection asymmetries

