

<u>Pressure-induced Superconductivity in</u> <u>Topological Quantum Materials</u>

Dr. Pallavi Malavi

DST-Inspire faculty

(April 2019-present)

High Pressure and Synchrotron Radiation Physics Division,

Bhabha Atomic Research centre, Mumbai, India

Topological Quantum Materials

Topological Semimetal

Topological Superconductor

Insulator in Bulk,
conducting states on surface
bulk band inversion
Surface states in terms of
linear band crossings
(2D Dirac cone)
Helical spin polarization
robust to disorder

➢Linear band crossing at a Dirac point in bulk (3D Dirac cone)

- ➢ ultra-high mobility
- Non-saturating linear magnetoresistance

 Full superconducting pairing gap in bulk
 Gapless surface states
 /Majorana edge states
 platform for Topological Quantum Computation

Pressure as a tuning parameter

Weak Topological Insulator BiSe

- □ BiSe is a natural superlattice of Bi2Se3,-Bi2-Bi2Se3 having a trigonal structure.
- surface states on the side surfaces with even no. of Dirac cones
- a total structural reconstruction above 8 GPa into SnSe-type orthorhombic structures, with energetically tangled mixed phases (Cmcm and Pnma).
- above 13 GPa, Orthorhombic -CsCl-type cubic phase transition

Pressure-induced Superconductivity and its persistence upon P-release

P-induced SC above 6 GPa
 SC is preserved in the P-released sample with trigonal symmetry that supports Topological insulating state
 Cubic BiSe: candidate 3D Topological Superconductor!

Type II Dirac semimetal candidate Ir₂In₈S

Type II DSM exhibiting tilted Dirac cones two Dirac crossings at 25 and 40 meV above the Fermi level **pressure-induced band** broadening may shift the Fermi level upward towards the Dirac points by enhancing the carrier density and thus possibly exhibiting exotic transport signatures including superconductivity.

High pressure Resistivity measurements

Superconductivity upon P-release in presence of Large MR!!

References

- 1. X.-L Qi & S.-C Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
- 2. S. M. Young, et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. **108**, 140405 (2012).
- 3. S. Sasaki, Topological Superconductivity in CuxBi2Se3 et. al; Phys. Rev. Lett. **107**, 217001 (2011).
- 4. P. Malavi, et.al, Signature of superconducting onset in presence of large magnetoresistance in type-II Dirac semimetal candidate Ir2In8S, New J. of Phy.**24**,102002, (2022).
- Pressure-induced superconductivity in the weak topological insulator BiSe, Phys. Rev. B 107, 024506 (2023).

Acknowledgements

Financial support by Department of Science and Technology (DST) of the Government of India is gratefully acknowledged.

Collaborators:

IISC (P S Anil Kumar, A. K. Sood) IISER Pune (Surjeet Singh) ELETTRA Italy (Boby Joseph)

