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e GRBs were discovered serendipitously' by
the Vela Satellites in the late 1960s, and the
data were reported several years later.

® The Compton Gamma-ray Observatory
(CGRO ) was launched in 1991, with the
Burst and Transient Experiment (BATSE )
on board; BATSE provided evidence for an
isotropic spatial distribution of GRBs, giving
significant support to a cosmological origin
interpretation

TIFR-2017 3 1/12/2017
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énery ellftérlow (for GRB 970228) in the X-ray band, facilitating optical and
radio detections;

® The first measurements of the GRB redshifts were obtained (for GRB

97050826 and GRB 97121427, giving a solid proof that GRBs are at
cosmological distances;

o A likely GRB-supernova association (GRB 980425 vs. SN 1998bw) was
discovered;

® A bright and prompt optical flash and a radio flare were discovered to
accompany the energetic burst GRB 990123;

® An achromatic steepening break in the afterglow light curves was found in
several bursts, hinting that at least some GRB fireballs are likely to be
collimated

e X-ray spectral features with moderate significance were discovered in

several GRB X-ray afterglows
TIFR-2017 7 1/12/2017
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ANATOMY OF A BURST

When a black hole forms from a collapsed stellar core, it
generates an explosive flash called a y-ray burst. Contrary
to earlier thinking, evidence now suggests that the glowing Afterglow

fireball produces more y-rays than do the shock waves
from the blast. Synchrotron
radiation

Thermal
radiation

Black

hole
1 FIREBALL 2 FIREBALL IS 3 SHOCK WAVES 4 ELECTRONS HIT
IS OPAQUE TRANSPARENT ACCELERATE ELECTRONS INTERSTELLAR
Electron—-photon Thermal radiation y-rays are emitted by MEDIUM
interactions includes y-rays accelerated electrons and They rapidly decelerate,
prevent light emitted by high- boosted to high energies emitting optical light
from escaping. temperature plasma. through scattering. and X-rays.

TIFR-2017 8 1/12/2017
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Gamma-ray Burst Monitor (GBM)
Nal and B&O Detectors
8 kel - 40 MeV

et AR KEY FEATURES
' -Spacecraft "'""""' — £ « Huge field of view

I b
= —Cenerdl o _LAT: 20% of the sky at any
instant in sky survey mode,
expose all parts of sky for
~30 minutes every 3 hours.

GBM whole unocculted sky
at any time.

« Huge energy range, including
largely unexplored band 10 GeY -
100 GeV. Total of >7 energy
decades!

- Large leap in all key capabilities.
Great discovery potential.
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Why GBM?

Wider spectral range

— « Typical' Prompt GRB Spectrum
- 1] Y T Y Y

MNals (location & low-E spectrum) -~ T GBM : ]

-

E N (ergem” s

GEM FoVv
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. Systematlc analyses of GRB spectral datz dlcate that a

“"so-called B function” (or ~Band function” fts reasonably well most of
the GRB spectra (for both classes of bursts)

vE, time integrated
A Time-integrated photon spectrum (3.3 s -21.65) SpeCtl‘um Of GRB 090926A. AS
b for GRB090902B, an additional
power law is required together
with the traditional Band
function. However, in this case,
a break can be measured in the
additional power law around
tens of MeV

Time resolved VF, spectra of
GRB 090926 A. Imtlally, the

prompt emission spectrum is

vF, (erg/cn?/s)

—_—
‘\g
(5]
=
o
pust
<)
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iz
>

e [3]: 0.0 5 - 3.3 s(Banc.!) = : " ~ \ Well fit With a. Single Band
b]: 3.35 - 9.7 s (Band) 5 | function,
e [C]: 9.7 5 - 10.5 s (Band + CUTPL) )
—— wwssones@napy | After few second, the additional

power law kicks off.
Energy (keV) 1/12/2017
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| Fine time-resolved vFv
| spectra using C+BB

(equivalent to B+BB). The blue
lines correspond to the Band
function, the red ones to the

BB component, and the black
lines are the sum of the two

components. The solid black
lines correspond to the model
obtained with the best
parameters from the fits, and
the thin black

lines correspond to the 1o
uncertainty on the best fits.
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Numbers of GRBs
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GHB 100116897

GRE 131014215 7| | TR Vel P A
l Duration (T,,) -Energy
I relation (top panels)

Il and Ts—energy relation
Il (bottom panels)

| calculated for GRB

il 100116A (left) and GRB
il 131010A (right). In the

Il case of GRB 100116A,

3 the duration drops from

1 1 1 1
1 Lo 1o 10"
Energy (kel)

GRB 1001168597 ]

1 1 1 1
1 iy 1o 10"
Energy [kel)

Univars

T90~110 s to just few

| seconds, while
S| GRB131014A’s duration
)l smoothly decreases

il from one energy band

| to the next. This effect is
| visible also in the T05

il vs. Energy plots, where
| the delayed start of the

il higher-energy emission
| in GRB 131014A is

clearly visible -’ "
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Normalized Duration Tyy-Energy relation calculated for the 27

bright bursts of our subsample. 7 GRBs in our sub-sample are

detected only up to 10 MeV, so no LLE duration could be

computed (left panel). Other 7 GRBs are detected in LLE but only
up to 100 MeV (middle panel), while 13 GRBs are detected all the
way tip'to 1 GeV (right panel). © gl
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1

Doppler Factor |[) =

(1 —v/ccos)l

Spectral lags could arise due to the curvature effect of the shocked shell. At the source, the relativistically
expanding shell emits identical pulses from all latitudes. However, when the photons reach the detector, on-axis

photopggelypposted to higher energy (hard). Meanwhile,gff-axis photons get relatively smaller bogstjanshiravel
longer to reach the detector. Thus, these photons are softer and arrive later than the on-axis photons.
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Spectral
lags and
minimum
variability
time scales
are plotted
for band 1.
Red point
indicates

short GRB
in the
sample.
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The light curve variability time scale is an interesting parameter which most models
attribute to a physical origin e.g., central engine activity or relativistic turbulence. We
develop a statistical method to estimate the GRB optimum bin-width, t,, of

GRBs which is consistent with the minimum variability time scale ( t, ) for a

sample of long and  FiYas
short GRBs detected
by GBM.
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r I 1rrrrr
1 IIIIIII.
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A plot of the ratio of the EFE®
variances of the

differential of the burst

and background

light curves divided by

a number proportional Q.10
to the bin-width as a
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Variability Times (s)
A distribution of the minimum pulse rise time for long and short GRBs. The minimum

variability time scale or the minimum tted pulse rise time clearly shows a bimodal

distrippbign showing that it can be a parameer to distinguish between long apeh short
GRBs.
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50 - 300 keV

Number

Short GRBs —NS-NS, NS-BH

* GBM: ~ 40 triggered short
GRBs/year

* Swift: ~ 9 short GRBs/year

TIFR-2017
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After the GW event.
“Fermi GBM Observations of
LIGO Gravitational-wave Event

GW150914” Connaughton, V., et
Seconds from GW T0 al' 2016/ Ap]’ 826/ L6

o deviation from a background fit
NalO Nall Nal2 Nal3 Nald4 Nalb5

1.31 1.81 0.64 1.056 2.42 1.68
Nal 6 Nal7 Nal&8 Nal9 Nall0 Nalll

Counts per Second

1.31 1.64 1.45  2.20 1.61 0.66
BGO 0 BGO 1
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Evidence for:
o 3 sigma False Alarm Probabllity

o GBM signal localized fo a region
consistent with the LIGO sky map

o Cannoft be attributed to other
known asfrophysical, solar, terrestrial
or magnetospehric activity

O

@]

Evidence against:

Low significance

Lack of corroboration by
other experiments

Nature of the LIGO eventis a
BH-BH merger

Lightning -
(TGFs/TEBS) e e |
Galactic s No No
Sources

b I No ? ?
spheric

Solar -

Activity ' o No
Something " " "
New ' ' '
Short GRB Yes Yes Yes

MNo

MNo

Mo

No

N/A

No

N/A

Mo
No
Mo

Mo

Mayhe?
Unlikely

. MOST
LIKELY

Yes
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All GRBs do not fit the standard Band spectrum without
additional components which become necessary when the data
from a larger energy band-width are available.

The origin of the some of the spectral components is still
unknown.

High energy signals in some GRBs are consistent with after-glow
produced by the external shock.

Bimodality of Burst durations are strictly valid in the limited 50-
300 keV energy range.

Ty, in general seem to fall with increasing energy but much less
steeply than thought before.

TIFR-2 30 1/12/2017
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 _Spectral lag some short and long bursts sgem.to change sien at .
several MeV energies hinting at a different physics for the production

of high energy photons.

At lower energies short busts exhibit small or no spectral lag while
long GRBs do exhibit larger lags.

Minimum variability times of GRBs show a bi-modal behavior

consistent with short bursts being more compact compared to long
GRBs.

While generally variability increases with energy individual bursts
exhibit lot of diversity.

One possible short burst has been detected by GBM 0.4s after the first
gravitational wave event.

If this is indeed is the electromagnetic counter-part of GW’s it poses

more questions than it solves.
TIFR-2017 31 1/12/2017
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e LAT:

Fermi and GRB

I

w

« GBM: 12 Nal detectors—

 Expected ~240 GRB/year with observations from 8 keV to 30 MeV, ~80
GRB/year with observations from 8 keV to 300 GeV (# high energy
detections is under study)

Exceptionally
good spectral
observations of
the prompt phase
of lots of GRB

-3 -2 -1 0 1 2 3 1 5
TIFR-2017 107 10° 10" 10° 10" 10° 10° 10" 10
Photon Energy (MeV)

E*N; (ergem?®s™)




Arb1trar1ly scaled hght curves and
temporal fits for all Prominent jet
breaks in the observed frame (left) and
rest frame (right, where available). The
final light curve break is indicated by
the vertical line in the same color as the
light curve and fit.

Canonical X-ray afterglow light curve

I is high latitude emission. II
is due to continuous energy
injection.

|

i, t~10°=10%s
o~05

Lt ~10-10°s
b3

1

I1I is the spherical decay of the
afterglow v

Flux (arbitrarily scaled)

GRBOG0G14
GRBO060707 \

GRB050319

1 10’

10° 10° 10* 10° 10° 107

10’
~ Time since BAT trigger /(1+2) (s)

10° 10° 10* 10° 10°
~ Time since BAT trigger (s)

10°
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Natonal Aeronatics and Space Adminksiration
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GBM consists of an array of:
« 12 Nal scintillation detectors < 1 MeV
+ 2 BGO detectors < 40 MeV

» Bursts are seen as coincident excess over
a% “°  background in multiple detectors
* sSmooth background fit
* coincidence rejects noise
* relative rates determine source location

L !ﬂ“

Continuous production of offline (daily) data products
» CTIME: (0.256s, 8 channels) for high time resolution
» CSPEC: (4s, 128 channels) for high spectral resolution
« TTE: (2us, 128 channels) for detailed time and spectral resolution
continuous archiving of TTE data starting end of 2012

9d00s3[9 ], 90edS /(;E.I—ELULUED [HLI@
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Gamma-ray Burst Monitor _Catalogs
""The 3rd Fermi GBM Gamma

a—rayBurst Catalog The First SiX Years

Bhat, P.N. et al., ApJSS, 223, 28 (2016)

* GRB time-resolved spectral catalog: The brightest bursts in the first 4 years
Yu, H.-F. et al., A&A, 588, A135 (2016)

* The Fermi-GBM Three-year X-ray BurstCatalog
Jenke, P.A. et al., Ap], 826, 228 (2016)

 First GBM TGF catalog:
Fitzpatrick, G. et al., in preparation

* The Five Year Fermi/GBM Magnetar Burst Catalog
Collazzi A.C. et al., ApJ, 218, 11 (2015)

Other results: Earth occultation monitoring, Pulsar Monitoring, ...
*GBM Observations of GW Event Counterparts Untriggered & Targeted Search
GW1a09h4; LVT151012, GW151226 38 1/12/2017
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s eV}

Flux (photors  om™

E'Ng (erg em ™ s™)

(Briggset d. 1999, ApJ,524,82-91)

Low Energy Power Law Index

Most Ilkely synchrotron emission from e- propagating and accelerated in the jet.
Additional PL not compatible with synchrotron emission.

In the Fermi Era

(Gonzalez et al. 2003, Nature 424, 749)

(Abdo et al. 2008, ApIL 705, 138)

Abdo et al. 2009, Scien ce, 323, 1688A)
(Guiriecet d. 2011, AplL 727, L33)

* — Adgitional PL extending from low to high energy challenges both leptonic and hadrppig jpedels.
» Thermal emission interpreted as jet photospheric emission.
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Evolution
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Prompt emission spectra of GRBs are much more complex that the Band
function usually used in the BATSE Era.

« With Fermi, we start to fit physical models to the spectra while only empirical
models were used previously.

 For the first time, we clearly identified a thermal component in addition
to the non-thermal Band function.

- Using the BB component, the Band function parameters are usually more
compatible with synchrotron models.

 Interpretation of the additional PL remains challenging for the physical
models (need SVOM and CTA ?).

Synch model + BB + PL

g

SNynch T.uu__.

(Burgess et al. 2011, in press)
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3 Figure [: Lightcurves of GRB090227B in the
e | 40.7 - 70.19 keV| and 141.81 - 269.89 keV
' | energy ranges and the resulting cross-
correlation function.
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dependence of the
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GRB Light curves and the role of

the central engine.

According to the current Fireball model the pulses seen in y-ray burst
light curves result

from collisions between shealls with different values of the Lorentz factors
b

The relevant time scales that determine the pulse shape parameters are:

a. Angular timet,,,, which results from the spherical geometry of the

shells, t,,, ~ F!JEI‘ES,,

b. The hydrodynamic time, t;,; which arises from the shell width and
the shock crossing time and

¢. The cooling time -thetimethat takes for the emitting electronsto
cool; for synchrotron emission with typical parameters ofthe
internal shocks; this time is much shorter than tne and tyae

Other factorswhich decide the efficdency of emission of apulse during
a collision and pulse shape are the relative Lorentz factors of the
shells, the relative shall masses aswell as the type of collisions

TIFR-2017 1/12/2017
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A plot showing the optimum bin-width, t,, of GRBs as a function the minimum
risétRA87 t , of the tted lognormal pulses df the same GRB (s). 1/12/2017
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A comparison of the minimum variability times of bursts by the present method

with that estimated independently by an independent method using wavelet transforms
by Ma&kdthlan et al., (2012). 49 1/12/2017
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@ Search algorithm for un-triggered short GRBs (sGRBs)
4 Using Ctime Tagged Event data, 2ps time resolution, 128 energy

channels.
d 2 detectors: 2.5 0 and another 1.25 o0 above background
1 On-Board, 2 detectors: 4.5<0<7.5
1 10 timescales: 0.1s to 2.8s
O On-Board: 16 ms< t <8.096 s
5 energy ranges (optimized on GBM-triggered weak sGRBs)
O Unfavorable geometry of the two above-threshold detectors are
eliminated

Q Soft and long duration candidates are removed

=» Additional ~35 per year, most of them undetected by other instruments

(verification in progress)
TIFR-2017 51 1/12/2017
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