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Vus from kaon decays in theory

leptonic Kℓ2 and πℓ2 decays: Vus / Vud from lattice determinations of fK / fπ 

semileptonic Kℓ3 decays: Vus from lattice determinations of f+(q2 = 0)

test of the unitarity of the first-row of the CKM matrix using lattice inputs at the permille level

outline of the talk

*
*

*

*

*

new powerful strategy to calculate weak decay rates on the lattice including QED

====> feasibility demonstrated in the case of the leptonic Kℓ2 and πℓ2 decays

lattice calculations of the full momentum dependence of the semileptonic form factors

novelties
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Γ K + → +ν ( )
Γ π + → +ν ( ) ⇒

Vus
Vud

f
K +

f
π +

= 0.2760 (4)    [0.14 %]        Moulson '14[ ]     adopted by PDG '16 & FLAG '16

extraction of Vus / Vud from leptonic Kℓ2 and πℓ2 decays
[see also Moulson’s talk in WG1]

from experiments

* EM corrections, δ EM
PS+ , estimated through ChPT with LECs parameterizing structure-dependent hadronic contributions

* relevant hadronic quantity:     fPS+     including strong SU(2) breaking mu ≠ md( )
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 * SEW  = universal short-distance EW correction  1.0232( )

δ EM
K +

−δ EM
π +

= −0.0069 17( ) [see, e.g., Cirigliano and Neufeld ’11]

ChPT with LECS motivated by large-Nc methods:
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Γ K +,0 →π 0,−ν ( ) ⇒ Vus f+ 0( ) = 0.2165 (4)    [0.18 %]        Moulson '14[ ]     adopted by FLAG '16

extraction of Vus from semileptonic Kℓ3 decays

extraction of Vus from semi-inclusive τ decays see Maltman’s and Banerjeei’s talks in WG1

 * EM corrections, δ EM
K , and strong SU(2) breaking, δ SU (2)

Kπ ,  both estimated through ChPT

* relevant hadronic quantity: vector form factor at zero 4-momentum transfer f+ 0( ) ≡ f+
K 0π −

q2 = 0( )

 
Γ K +,0 →π 0,−+ν( ) = GF

2M
K + ,0
5

192π 3 C
K + ,0
2 Vus f+

K 0π −

0( )
2
IK
0( ) SEW 1+δ EM

K + ,0 +δ SU (2)
K + ,0π( )

* C
K + ,0 = Clebsh-Gordan coefficient C

K + = 1 2 ,C
K 0 = 1( ),  Sew = short-distance EW correction

 * IK
0( ) = phase-space integral sensitive to the momentum dependence of vector (and scalar) form factor

404 Eur. Phys. J. C (2010) 69: 399–424

are less mature than those of fK/fπ . In particular, most
results shown in Fig. 2 were obtained with only one lat-
tice spacing and with heavy pion masses. Additionally, only
one calculation of f+(0) exists with NF = 2 + 1: that from
RBC/UKQCD [55, 56]. While BMW, MILC, and HPQCD
currently have interesting results for fK/fπ , these groups do
not yet have results for f+(0).

Nevertheless, the special chiral properties of f+(0) make
it possible to obtain lattice estimates with relative uncer-
tainties comparable to those for fK/fπ . Among the lat-
tice results for f+(0) in Fig. 2, particularly noteworthy are
the studies from RBC/UKQCD ’07 [55], RBC/UKQCD ’10
[56], and ETMC [54]. The corresponding values of f+(0)

are respectively

f+(0) = 0.9644(33)stat(34)syst-extr(14)syst-lat, (16a)

f+(0) = 0.9599(33)stat
(+31
−43

)
syst-extr(14)syst-lat, (16b)

f+(0) = 0.9560(57)stat(62)syst. (16c)

(The two contributions to the systematic errors on the
RBC/UKQCD results are from extrapolation uncertainties
and lattice effects, respectively.) In [55] and in their up-
date [56], RBC/UKQCD make use of a simulation with
NF = 2+1, but a rather coarse lattice spacing (a = 0.11 fm)
and a lightest pion mass of mπ ≈ 330 MeV. Even though the
use of smaller lattice spacings would be advisable, the cor-
responding error on the SU(3) breaking of f+(0) seems to
be under control to within the stated systematic uncertainty
(see, e.g., discussion in [6]). A critical issue is the chiral
extrapolation from their points with mπ ! 330 MeV. In the
new study from RBC/UKQCD [56], there is an attempt to
quantify the systematic error from the extrapolation, but a
better understanding of the NNLO terms in the chiral expan-
sion,3 as well as additional NF = 2 + 1 simulation points at
smaller pion masses, are needed to fully address this delicate
point.

The recent ETMC study [54] makes use of very light
pions, as well as different lattice spacings and volumes.
Both SU(2) and SU(3) chiral fits are investigated and give
compatible results, which is in contrast to the findings of
RBC/UKQCD, in which the SU(2) chiral extrapolation for
f+(0) has few points with mπ ≤ 400 MeV and looks prob-
lematic [56]. In summary, the ETMC result features a more
thorough exploration of systematics than the RBC/UKQCD
result. However, the ETMC simulation still has NF = 2, and
the final uncertainty on f+(0) is inflated to take into ac-
count unknown systematics related to the quenching of the
strange quark. At present, many other groups are occupied
with finalizing their studies of fK/fπ . As attention returns

3Reference [57] describes exploratory NNLO fits using RBC/UKQCD
results for f0(t).

to f+(0), further progress on understanding these systemat-
ics should be possible.

For the numerical analysis in Sect. 4 we use as our refer-
ence number

f+(0) = 0.959(5), (17)

which is our symmetrization of the recent RBC/UKQCD re-
sult [56]. However, we note that this value is fairly represen-
tative of the results and spread of values in (16). This number
is also basically consistent with the average of the NF = 2
ETMC and NF = 2 + 1 RBC/UKQCD results as quoted at
the most recent Lattice conference, f+(0) = 0.962(5) [6].

2.2.2 Electromagnetic effects in K"3 decays

The results of the most recent calculation [58] of the long-
distance electromagnetic corrections to the fully-inclusive
K"3(γ ) decay rates for each of the four modes (the δK"

EM in
(9)) are listed in Table 1. These values were obtained to lead-
ing nontrivial order in chiral effective theory, working with
a fully-inclusive prescription of real photon emission. For
the low-energy electromagnetic couplings appearing in the
structure-dependent contributions, the recent determinations
of [59] and [60] were used. The errors in Table 1 are es-
timates of higher-order contributions that are only partially
known. The associated correlation matrix was found to be
[58]




+1.000 +0.081 +0.685 −0.147
+1.000 −0.147 +0.764

+1.000 +0.081
+1.000



 . (18)

It is also useful to list the uncertainties on the linear combi-
nations of δK"

EM that are relevant for lepton-universality and
strong isospin-breaking tests (as in Sects. 4.2 and 4.3):

δK0e
EM − δ

K0µ
EM = (−0.205 ± 0.085)%, (19a)

δK±e
EM − δ

K±µ
EM = (0.042 ± 0.085)%, (19b)

δK±e
EM − δK0e

EM = (−0.445 ± 0.160)%, (19c)

δ
K±µ
EM − δ

K0µ
EM = (−0.692 ± 0.160)%. (19d)

The corresponding electromagnetic corrections to the Dalitz
plot densities can be found in [58]. It is important to note that

Table 1 Electromagnetic
corrections to the fully-inclusive
K"3(γ ) rate [58]

Mode δK"
EM (%)

K0
e3 0.495 ± 0.110

K±
e3 0.050 ± 0.125

K0
µ3 0.700 ± 0.110

K±
µ3 0.008 ± 0.125

[see FlaviaNet ’10]
δ SU (2)
K 0π −

= 0

δ SU (2)
K +π 0 = 2.9± 0.4( )%

nice consistency between the two channels:

large local corrections (up to 10%) for Dalitz plots

momentum dependence needed for evaluating  EM corrections

[Cirigliano et al. ’08]
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Abstract

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making

them easily accessible to the particle physics community. More specifically, we report on the determi-

nation of the light-quark masses, the form factor f+(0), arising in the semileptonic K → π transition at

zero momentum transfer, as well as the decay constant ratio fK/fπ and its consequences for the CKM

matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some

of the low-energy constants of SU(2)L × SU(2)R and SU(3)L × SU(3)R Chiral Perturbation Theory.

We review the determination of the BK parameter of neutral kaon mixing as well as the additional

four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities

are an addition compared to the previous review. For the heavy-quark sector, we provide results for

mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay

constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant

for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we

review the status of lattice determinations of the strong coupling constant αs.

∗Present address: 14
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or estimate, despite not carrying any red tags. This happens, for instance, whenever aspects
of the analysis appear to be incomplete (e.g. an incomplete error budget), so that the presence
of inadequately controlled systematic effects cannot be excluded. This mostly refers to results
with a statistical error only, or results in which the quoted error budget obviously fails to
account for an important contribution.

Of course any colour coding has to be treated with caution; we emphasize that the criteria
are subjective and evolving. Sometimes a single source of systematic error dominates the
systematic uncertainty and it is more important to reduce this uncertainty than to aim for
green stars for other sources of error. In spite of these caveats we hope that our attempt to
introduce quality measures for lattice simulations will prove to be a useful guide. In addition
we would like to stress that the agreement of lattice results obtained using different actions
and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are measured
become tighter. For this reason, some of the quality criteria related to the light-quark sector
have been tightened up between the first [1] and second [2] editions of FLAG.

In the second edition we have also reviewed quantities related to heavy quark physics [2].
The criteria used for light- and heavy-flavour quantities were not always the same. For the
continuum limit, the difference was more a matter of choice: the light-flavour Working Groups
defined the ratings using conditions involving specific values of the lattice spacing, whereas
the heavy-flavour Working Groups preferred more data-driven criteria. Also, for finite-volume
effects, the heavy-flavour groups slightly relaxed the boundary between ! and ◦, compared
to the light-quark case, to account for the fact that heavy-quark quantities are less sensitive
to the finiteness of the volume.

In the present edition we have opted for simplicity and adopted unified criteria for both
light- and heavy-flavoured quantities.4 The colour code used in the tables is specified as
follows:

• Chiral extrapolation:
! Mπ,min < 200 MeV
◦ 200 MeV ≤ Mπ,min ≤ 400 MeV
! 400 MeV < Mπ,min

It is assumed that the chiral extrapolation is performed with at least a three-point
analysis; otherwise this will be explicitly mentioned. This condition is unchanged from
Ref. [2].

• Continuum extrapolation:
! at least 3 lattice spacings and at least 2 points below 0.1 fm and a range of lattice
spacings satisfying [amax/amin]2 ≥ 2
◦ at least 2 lattice spacings and at least 1 point below 0.1 fm and a range of lattice
spacings satisfying [amax/amin]2 ≥ 1.4
! otherwise
It is assumed that the lattice action isO(a)-improved (i.e. the discretization errors vanish

4 We note, however, that the data-driven criteria can be used by individual working groups in order to rate
the reliability of the analyses for specific quantities.
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There are two other important criteria that also play a role in this respect, but that cannot
be colour coded, because a systematic improvement is not possible. These are: i) the publi-
cation status, and ii) the number of sea-quark flavours Nf . As far as the former criterion is
concerned, we adopt the following policy: we average only results that have been published in
peer-reviewed journals, i.e. they have been endorsed by referee(s). The only exception to this
rule consists in straightforward updates of previously published results, typically presented
in conference proceedings. Such updates, which supersede the corresponding results in the
published papers, are included in the averages. Note that updates of earlier results rely, at
least partially, on the same gauge-field-configuration ensembles. For this reason, we do not
average updates with earlier results. Nevertheless, all results are listed in the tables,10 and
their publication status is identified by the following symbols:

• Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of November 2015 is relevant.
If the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.

As noted above, in this review we present results from simulations with Nf = 2, Nf = 2+1
and Nf = 2 + 1 + 1 (except for r0ΛMS where we also give the Nf = 0 result). We are not
aware of an a priori way to quantitatively estimate the difference between results produced
in simulations with a different number of dynamical quarks. We therefore average results at
fixed Nf separately; averages of calculations with different Nf will not be provided.

To date, no significant differences between results with different values of Nf have been
observed in the quantities listed in Tabs. 1 and 2. In the future, as the accuracy and the
control over systematic effects in lattice calculations increases, it will hopefully be possible
to see a difference between results from simulations with Nf = 2 and Nf = 2 + 1, and thus
determine the size of the Zweig-rule violations related to strange-quark loops. This is a very
interesting issue per se, and one which can be quantitatively addressed only with lattice
calculations.

The question of differences between results with Nf = 2 + 1 and Nf = 2 + 1 + 1 is more
subtle. The dominant effect of including the charm sea quark is to shift the lattice scale, an
effect that is accounted for by fixing this scale nonperturbatively using physical quantities.
For most of the quantities discussed in this review, it is expected that residual effects are small
in the continuum limit, suppressed by αs(mc) and powers of Λ2/m2

c . Here Λ is a hadronic
scale that can only be roughly estimated and depends on the process under consideration.
Note that the Λ2/m2

c effects have been addressed in Ref. [90]. Assuming that such effects are
small, it might be reasonable to average the results from Nf = 2 + 1 and Nf = 2 + 1 + 1
simulations. This is not yet a pressing issue in this review, since there are relatively few
results with Nf = 2 + 1 + 1, but it will become a more important question in the future.

10Whenever figures turn out to be overcrowded, older, superseded results are omitted. However, all the most
recent results from each collaboration are displayed.
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quadratically with the lattice spacing); otherwise this will be explicitly mentioned. For
unimproved actions an additional lattice spacing is required. This condition has been
tightened compared to that of Ref. [2] by the requirements concerning the range of lattice
spacings.

• Finite-volume effects:
! [Mπ,min/Mπ,fid]2 exp{4−Mπ,min[L(Mπ,min)]max} < 1, or at least 3 volumes
◦ [Mπ,min/Mπ,fid]2 exp{3−Mπ,min[L(Mπ,min)]max} < 1, or at least 2 volumes
! otherwise
It is assumed here that calculations are in the p-regime5 of chiral perturbation theory,
and that all volumes used exceed 2 fm. Here we are using a more sophisticated condition
than that of Ref. [2]. The new condition involves the quantity [L(Mπ,min)]max, which is
the maximum box size used in the simulations performed at smallest pion mass Mπ,min,
as well as a fiducial pion mass Mπ,fid, which we set to 200 MeV (the cutoff value for a
green star in the chiral extrapolation).

The rationale for this condition is as follows. Finite volume effects contain the universal
factor exp{−L Mπ}, and if this were the only contribution a criterion based on the values
of Mπ,minL would be appropriate. This is what we used in Ref. [2] (with Mπ,minL > 4 for
! and Mπ,minL > 3 for ◦). However, as pion masses decrease, one must also account for
the weakening of the pion couplings. In particular, 1-loop chiral perturbation theory [82]
reveals a behaviour proportional to M2

π exp{−L Mπ}. Our new condition includes this
weakening of the coupling, and ensures for example, that simulations with Mπ,min =
135 MeV and L Mπ,min = 3.2 are rated equivalently to those with Mπ,min = 200 MeV
and L Mπ,min = 4.

• Renormalization (where applicable):
! nonperturbative
◦ 1-loop perturbation theory or higher with a reasonable estimate of truncation errors
! otherwise
In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop in
perturbation theory. In Ref. [2] we decided that this was too restrictive, since the error
arising from renormalization constants, calculated in perturbation theory at 1-loop, is
often estimated conservatively and reliably.

• Renormalization Group (RG) running (where applicable):
For scale-dependent quantities, such as quark masses or BK , it is essential that contact
with continuum perturbation theory can be established. Various different methods are
used for this purpose (cf. Appendix A.3): Regularization-independent Momentum Sub-
traction (RI/MOM), the Schrödinger functional, and direct comparison with (resummed)
perturbation theory. Irrespective of the particular method used, the uncertainty associ-
ated with the choice of intermediate renormalization scales in the construction of physical
observables must be brought under control. This is best achieved by performing compar-
isons between nonperturbative and perturbative running over a reasonably broad range
of scales. These comparisons were initially only made in the Schrödinger functional
approach, but are now also being performed in RI/MOM schemes. We mark the data
for which information about nonperturbative running checks is available and give some
details, but do not attempt to translate this into a colour code.

5We refer to Sec. 5.1 and Appendix A.4 in the Glossary for an explanation of the various regimes of chiral
perturbation theory.
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colour coding

Mπ , fid = 200 MeV

only results with A and no red tags
enter the FLAG averages

FLAG 1st (2011)
FLAG 2nd (2014)

FLAG 3rd updated at Oct 30th, 2016
http://itpwiki.unibe.ch/flag/index.php
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three methods to include strong 
SU(2)-breaking corrections

- extrapolation up to mu or md

- insertion of the scalar density
- estimate using ChPT

f
K ±

f
π ±

= fK
fπ

1+δ SU (2)

δ SU 2( )
ChPT = md −mu

ms −mud

1− fK
fπ

+ 1
32π 2 f0

2

⎡

⎣
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            MK
2 −Mπ

2 −Mπ
2 log MK

2

Mπ
2

⎛
⎝⎜

⎞
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⎤

⎦
⎥ + ...

δ SU 2( )
extrapolation( ) = −0.0054 14( )         HPQCD

δ SU 2( )
insertion( ) = −0.0080 4( )           RM123

δ SU 2( )
ChPT( ) = −0.0043 11( )          C&N '11
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fK/fπ fK±/fπ±

ETM 14E [27] 2+1+1 A ◦ ! ◦ 1.188(11)(11) 1.184(12)(11)
FNAL/MILC 14A [14] 2+1+1 A ! ! ! 1.1956(10)(+26

−18)
ETM 13F [230] 2+1+1 C ◦ ! ◦ 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [26] 2+1+1 A ! ◦ ! 1.1948(15)(18) 1.1916(15)(16)
MILC 13A [231] 2+1+1 A ! ! ! 1.1947(26)(37)
MILC 11 [232] 2+1+1 C ◦ ◦ ◦ 1.1872(42)†stat.
ETM 10E [233] 2+1+1 C ◦ ◦ ◦ 1.224(13)stat

BMW 16ulb [234, 235] 2+1 P ! ! ! 1.182(10)(26)
RBC/UKQCD 14B [10] 2+1 A ! ! ! 1.1945(45)
RBC/UKQCD 12 [31] 2+1 A ! ◦ ! 1.199(12)(14)
Laiho 11 [44] 2+1 C ◦ ! ◦ 1.202(11)(9)(2)(5)††

MILC 10 [29] 2+1 C ◦ ! ! 1.197(2)(+3
−7)

JLQCD/TWQCD 10 [236] 2+1 C ◦ " ! 1.230(19)
RBC/UKQCD 10A [144] 2+1 A ◦ ◦ ! 1.204(7)(25)
PACS-CS 09 [94] 2+1 A ! " " 1.333(72)
BMW 10 [30] 2+1 A ! ! ! 1.192(7)(6)
JLQCD/TWQCD 09A [237] 2+1 C ◦ " " 1.210(12)stat
MILC 09A [6] 2+1 C ◦ ! ! 1.198(2)(+6

−8)
MILC 09 [89] 2+1 A ◦ ! ! 1.197(3)( +6

−13)
Aubin 08 [238] 2+1 C ◦ ◦ ◦ 1.191(16)(17)
PACS-CS 08, 08A [93, 239] 2+1 A ! " " 1.189(20)
RBC/UKQCD 08 [145] 2+1 A ◦ " ! 1.205(18)(62)
HPQCD/UKQCD 07 [28] 2+1 A ◦ ◦ ◦ 1.189(2)(7)
NPLQCD 06 [240] 2+1 A ◦ " " 1.218(2)(+11

−24)
MILC 04 [107] 2+1 A ◦ ◦ ◦ 1.210(4)(13)

ETM 14D [160] 2 C ! " ◦ 1.203(5)stat
ALPHA 13A [241] 2 C ! ! ! 1.1874(57)(30)
BGR 11 [242] 2 A ◦ " " 1.215(41)
ETM 10D [215] 2 C ◦ ! ◦ 1.190(8)stat
ETM 09 [32] 2 A ◦ ! ◦ 1.210(6)(15)(9)
QCDSF/UKQCD 07 [243] 2 C ◦ ◦ ! 1.21(3)

† Result with statistical error only from polynomial interpolation to the physical point.
†† This work is the continuation of Aubin 08.

Table 14: Colour code for the data on the ratio of decay constants: fK/fπ is the pure QCD
SU(2)-symmetric ratio, while fK±/fπ± is in pure QCD including the SU(2) isospin-breaking
correction.

uncertainty comes from finite-size effects.
The new result from the ETM collaboration, f+(0) = 0.9709(45)(9) (ETM 16kpy),

makes use of the twisted-mass discretization adopting three values of the lat-

63

5



f
K ± f

π ± = 1.193 3( )         N f = 2 +1+1        HPQCD, FNAL/MILC, ETMC

f
K ± f

π ± = 1.192 4( )         N f = 2 +1            HPQCD/UKQCD, MILC, BMW, RBC/UKQCD

f
K ± f

π ± = 1.205 18( )       N f = 2                  ETMC

precision at the level of ~ 0.25 - 0.4% on f
K + f

π + both for N f = 2 +1 and N f = 2 +1+1
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f+ 0( ) = 0.9706 27( )         N f = 2 +1+1        FNAL/MILC, ETMC

f+ 0( ) = 0.9677 27( )         N f = 2 +1             FNAL/MILC, RBC/UKQCD

f+ 0( ) = 0.9560 84( )         N f = 2                  ETMC

precision at the level of ~ 0.3% on f+ 0( )  both for N f = 2 +1 and N f = 2 +1+1
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f+(0)

ETM 16kpy [207] 2+1+1 A ◦ ! ◦ 0.9709(45)(9)
FNAL/MILC 13E [22] 2+1+1 A ! ! ! 0.9704(24)(22)
FNAL/MILC 13C [208] 2+1+1 C ! ! ! 0.9704(24)(32)

JLQCD 16mha [209] 2+1 C ◦ " ! 0.9636(36)(+50
−54)

RBC/UKQCD 15A [24] 2+1 A ! ◦ ◦ 0.9685(34)(14)
RBC/UKQCD 13 [210] 2+1 A ! ◦ ◦ 0.9670(20)(+18

−46)
FNAL/MILC 12I [23] 2+1 A ◦ ◦ ! 0.9667(23)(33)
JLQCD 12 [211] 2+1 C ◦ " ! 0.959(6)(5)
JLQCD 11 [212] 2+1 C ◦ " ! 0.964(6)
RBC/UKQCD 10 [213] 2+1 A ◦ " ! 0.9599(34)(+31

−47)(14)
RBC/UKQCD 07 [214] 2+1 A ◦ " ! 0.9644(33)(34)(14)

ETM 10D [215] 2 C ◦ ! ◦ 0.9544(68)stat
ETM 09A [25] 2 A ◦ ◦ ◦ 0.9560(57)(62)
QCDSF 07 [216] 2 C " " ! 0.9647(15)stat
RBC 06 [217] 2 A " " ! 0.968(9)(6)
JLQCD 05 [218] 2 C " " ! 0.967(6), 0.952(6)

Table 13: Colour code for the data on f+(0).

algebra of SU(3), in particular [Qus, Qsu] = Quu−ss. This relation implies the sum rule∑
n |〈K|Qus|n〉|2−

∑
n |〈K|Qsu|n〉|2 = 1. Since the contribution from the one-pion intermedi-

ate state to the first sum is given by f+(0)2, the relation amounts to an exact representation
for this quantity [220]:

f+(0)
2 = 1−

∑

n "=π

|〈K|Qus|n〉|2 +
∑

n

|〈K|Qsu|n〉|2 . (57)

While the first sum on the right extends over nonstrange intermediate states, the second runs
over exotic states with strangeness ±2 and is expected to be small compared to the first.

The expansion of f+(0) in SU(3) chiral perturbation theory in powers of mu, md and ms

starts with f+(0) = 1+f2+f4+. . . [129]. Since all of the low-energy constants occurring in f2
can be expressed in terms of Mπ, MK , Mη and fπ [221], the NLO correction is known. In the
language of the sum rule (57), f2 stems from nonstrange intermediate states with three mesons.
Like all other nonexotic intermediate states, it lowers the value of f+(0): f2 = −0.023 when
using the experimental value of fπ as input. The corresponding expressions have also been
derived in quenched or partially quenched (staggered) chiral perturbation theory [23, 222].
At the same order in the SU(2) expansion [223], f+(0) is parameterized in terms of Mπ and
two a priori unknown parameters. The latter can be determined from the dependence of the
lattice results on the masses of the quarks. Note that any calculation that relies on the χPT
formula for f2 is subject to the uncertainties inherent in NLO results: instead of using the

60
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unitarity of the CKM first-row

 

from K 2  decays:    Vus
Vud

f
K +

f
π +

= 0.2760 (4)

from K 3  decays:    Vus f+ 0( ) = 0.2165 (4)

experimental results    [Moulson ’14]

Vu
2 ≡ Vud

2 + Vus
2 + Vub

2

SM:    Vu
2 ≡ 1

- using Vud = 0.97417 (21) from superallowed nuclear β  decays

Vu
2 = 0.9988 (6)        from f+ 0( )               ≈ 2σ

Vu
2 = 0.9998 (5)        from f

K + f
π +           ≈ 0.4σ

- adopting N f = 2 +1+1 lattice results:        Vu
2 = 0.980 9( )         ≈ 2.2σ

 [H&T ’15]
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* current precision has reached the level of few permille on both f
K + f

π + and f+ 0( )
* improvements can be expected from the production of new gauge ensembles
   - with better statistics
   - closer to the physical point
   - at finer lattice spacing
   - at larger lattice volume

     precision at the permille level (or even below) is foreseeable in the next future, but ...

 * EM correction for K 2  decays: 1+δ EM
K +

−δ EM
π +

= 0.9966 8( ) [ChPT]

* recently QED has been included in lattice QCD simulations in the case of the  hadron spectrum
RM123 ’13, BMW ’15, ...

* however => for the spectrum no IR divergencies
                  => for decay rates IR divergencies can be cancelled by summing up virtual and real photons 

* it’s not enough to add the EM interaction to the quark action, but new strategies should be developed 
   in order to evaluate decay rates on the lattice

such a new strategy has been recently proposed [PRD91 (2015) 074506]

and applied to the leptonic decays of kaons and pions [arXiv: 1610.09668 (LAT ’16)]

ambitious goal: evaluation of weak decay rates on the lattice including QCD and QED

uncertainty at the permille level (with some model-dependence)

9



1) the emission of virtual photons at leading order in the EM coupling is evaluated on the lattice

2) the subtraction of the infrared divergence is computed for a point-like meson using the finite lattice volume as the infrared regulator

3) the emission of virtual+real photons from a point-like meson is added using a photon mass for the infrared regularization

master formula for the leptonic decay rate

 
Γ PS→ ν γ[ ]( ) = Γ(tree) PS→ ν( ) ⋅ 1+δRPS ΔEγ( )⎡⎣ ⎤⎦

 
tree level:    Γ(tree) PS→ ν( ) = GF

2

8π
Vq1q2

2
m

2 1− m
2

MPS
2

⎛
⎝⎜

⎞
⎠⎟

2

fPS
(0)⎡⎣ ⎤⎦

2
MPS

δRPS ΔEγ( ) = 2π log
MZ

MW

⎛
⎝⎜

⎞
⎠⎟
+ 2δ APS

fPS
(0)MPS

⎡

⎣
⎢

⎤

⎦
⎥ +δΓ

pt ΔEγ( )

fPS
(0) ≡ pPS

µ

MPS
2 0 q2γ µγ 5q1 PS

MPS = MPS
(0) +α emδ EMMPS

+ md −mu( )δ SU (2)MPS

short-distance EW correction 
not included in GF (μ lifetime)

EM correction (virtual + real photons up 
to energy ΔEγ) for a point-like PS meson 
(using a photon mass as IR regulator)

virtual photon emissions calculated 
on the lattice (using the lattice 
volume as IR regulator)

* δAPS  and δΓ pt ΔEγ( )  are separately IR finite and independent on the specific IR regularization

Γ = Γ0
lattice L( )− Γ0

pt L( )⎡⎣ ⎤⎦ + Γ0
pt mγ( ) + Γ1pt mγ( )⎡⎣ ⎤⎦

the new procedure is based on a double expansion at LO in αem and δm = md - mu

PRD87 (2013) 114505
PRD91 (2015) 074506
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Lπ−l−νl ¼ iGFfπV"
udfð∂μ − ieAμÞπg

!
ψ̄ νl

1þ γ5
2

γμψl

"

þ Hermitian conjugate: ð39Þ

The corresponding Feynman rules are

ð40Þ

In addition we have used the standard Feynman rules of
scalar electromagnetism for the interactions of charged
pions in an electromagnetic field.
We start by giving the OðαÞ contributions to Γα;pt

0 .
(i) Wave-function renormalization of the pion: The

contribution of the pion wave function renormaliza-
tion to Γα;pt

0 is obtained from the diagrams in Fig. 8
and is given by

Γπ
0 ¼ Γtree

0 ×
α
4π

Zπ;

where Zπ ¼ −2 log
#
m2

π

M2
W

$
− 2 log

#
m2

γ

m2
π

$
−
3

2
:

ð41Þ

These diagrams correspond to those in Figs. 5(a),
5(b) and 5(c) in the composite case.

(ii) π-l vertex: The remaining graphs contributing to
Γα;pt
0 are the π-l vertex corrections from the dia-

grams shown in Fig. 9 and their complex conjugates.
The contribution from these diagrams is

Γπ−l
0 ¼ Γtree

0 ×
α
4π

Zπ−l; where ð42Þ

Zπ−l ¼ −2
1þ r2l
1 − r2l

logðr2lÞ log
#
m2

γ

m2
π

$
þ 4 log

#
m2

π

M2
W

$

þ 1þ r2l
1 − r2l

log2ðr2lÞ þ 2
1 − 3r2l
1 − r2l

logðr2lÞ − 1;

ð43Þ

and rl ¼ ml=mπ . These diagrams correspond to
diagrams Figs. 5(e) and 5(f) in the composite pion
case.
Next we give the contributions to Γ1ðΔEÞ where

the real photon is emitted and absorbed by the pion
(ππ), the charged lepton (ll) or emitted by the pion
and absorbed by the lepton or vice versa (πl).
The results are presented in the Feynman gauge,

X

r

ε⋆μðk; rÞενðk; rÞ ¼ gμν; ð44Þ

where εμðk; rÞ are the polarization vectors of the real
photon carrying a momentum k, with k2 ¼ 0 in
Minkowski space.

(iii) Real photon emission, ππ: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the pion, represented by diagram (a) in
Fig. 10, is given by

Γππ
1 ¼ Γtree

0 ×
α
4π

ðRππ
1 þ Rππ

2 Þ; where ð45Þ

Rππ
1 ¼ 2 log

#
m2

γ

4ΔE2

$
þ 4;

Rππ
2 ¼ 2r4l

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð6 − rE − 4r2lÞ
ð1 − r2lÞ2

;

ð46Þ

rE ¼ 2ΔE=mπ and 0 ≤ rE ≤ 1 − r2l. Here we have
separated Rππ

1 , the contribution in the eikonal
approximation, from Rππ

2 which vanishes as
ΔE → 0. In the eikonal approximation only the
leading terms in the photon’s momenta are kept in
the numerator and denominator of the integrand as
rE → 0. Rππ

1 contains the infrared divergence.

FIG. 8. One loop diagrams contributing to the wave-function
renormalization of a pointlike pion.

FIG. 9. Radiative corrections to the pion-lepton vertex. The diagrams representOðαÞ contributions to Γpt
0 . The left part of each diagram

represents a contribution to the amplitude and the right part the tree-level contribution to the Hermitian conjugate of the amplitude.
The corresponding diagrams containing the radiative correction on the right-hand side of each diagram are also included.
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(i) Wave-function renormalization of the pion: The
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(ii) π-l vertex: The remaining graphs contributing to
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Next we give the contributions to Γ1ðΔEÞ where
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(ππ), the charged lepton (ll) or emitted by the pion
and absorbed by the lepton or vice versa (πl).
The results are presented in the Feynman gauge,
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where εμðk; rÞ are the polarization vectors of the real
photon carrying a momentum k, with k2 ¼ 0 in
Minkowski space.

(iii) Real photon emission, ππ: The contribution to
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photon from the pion, represented by diagram (a) in
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FIG. 8. One loop diagrams contributing to the wave-function
renormalization of a pointlike pion.

FIG. 9. Radiative corrections to the pion-lepton vertex. The diagrams representOðαÞ contributions to Γpt
0 . The left part of each diagram

represents a contribution to the amplitude and the right part the tree-level contribution to the Hermitian conjugate of the amplitude.
The corresponding diagrams containing the radiative correction on the right-hand side of each diagram are also included.
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(iv) Real photon emission, ll: The contribution to
Γ1ðΔEÞ from the emission and absorption of a real
photon from the charged lepton, represented by
diagram (b) in Fig. 10, is given by

Γll
1 ¼ Γtree

0 ×
α
4π

ðRll
1 þ Rll

2 Þ; where ð47Þ

Rll
1 ¼ 2 log

!
m2

γ

4ΔE2

"
− 2

1þ r2l
1− r2l

logðr2lÞ; and

Rll
2 ¼ r2E − 1þð4rE− 6Þr2l

ð1− r2lÞ2
logð1− rEÞ

−
rEðrEþ 4r2lÞ
ð1− r2lÞ2

logðr2lÞþ
rEð6− 3rE− 20r2lÞ

2ð1− r2lÞ2
:

ð48Þ

(v) Real photon emission, πl: Finally, the contribution
to Γ1ðΔEÞ from the emission of a real photon
from the pion and its absorption by the charged
lepton, represented by diagrams (c)–(f) in Fig. 10, is
given by

Γπl
1 ¼ Γtree

0 ×
α
4π

ðRπl
1 þ Rπl

2 Þ; ð49Þ

where

Rπl
1 ¼2

1þr2l
1−r2l

logðr2lÞ log
!

m2
γ

4ΔE2

"
−
1þr2l
1−r2l

½logðr2lÞ&2

−4
1þr2l
1−r2l

Li2ð1−r2lÞ and

Rπl
2 ¼−2

2rEþr4l−2

ð1−r2lÞ2
logð1−rEÞþ

4rE
ð1−r2lÞ2

logðr2lÞ

þrEð2þrEÞ
ð1−r2lÞ2

−4
1þr2l
1−r2l

Li2ðrEÞ: ð50Þ

Note that for diagrams (c), (d) and (e) we include the
conjugate contribution in which the photon vertices
are interchanged between the left and right parts of
the diagrams. Thus for example, in addition to
diagram (c) there is the diagram in which the photon
is emitted from the lepton on the left and absorbed
on the pion on the right.

We are now in a position to combine the results in
Eqs. (41)–(50) in order to obtain the final expression for
ΓptðΔEÞ. As expected the infrared cutoff cancels and
we find

ΓptðΔEÞ ¼ Γtree
0 ×

!
1þ α

4π

#
3 log

!
m2

π

M2
W

"
þ logðr2lÞ − 4 logðr2EÞ þ

2 − 10r2l
1 − r2l

logðr2lÞ − 2
1þ r2l
1 − r2l

logðr2EÞ logðr2lÞ

− 4
1þ r2l
1 − r2l

Li2ð1 − r2lÞ − 3þ
$
3þ r2E − 6r2l þ 4rEð−1þ r2lÞ

ð1 − r2lÞ2
logð1 − rEÞ þ

rEð4 − rE − 4r2lÞ
ð1 − r2lÞ2

logðr2lÞ

−
rEð−22þ 3rE þ 28r2lÞ

2ð1 − r2lÞ2
− 4

1þ r2l
1 − r2l

Li2ðrEÞ
%&"

: ð51Þ

Note that the terms in square brackets in Eq. (51) vanish when rE goes to zero; in this limit ΓptðΔEÞ is given by its eikonal
approximation.

FIG. 10. Diagrams contributing to Γ1ðΔEÞ. For diagrams (c), (d) and (e) the “conjugate” contributions in which the photon vertices on
the left and right of each diagram are interchanged are also to be included. The labels (a)–(f) are introduced to identify the individual
diagrams when describing their evaluation in the text.
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calculation of δΓpt(ΔEγ)

δΓ pt ΔEγ( ) = δΓ0
pt +δΓ1

pt ΔEγ( ) the sum is IR finite (Bloch-Nordsieck mechanism)

* virtual photons δΓ0pt

* real photons δΓ1pt(ΔEγ)

ΔEγ ~ 10-20 MeV
for the point-like assumption to be valid 

[PRD91 (2015) 074506]

 r = m MPS , rE = 2ΔEγ MPS

��pt
(�E�) =

1

4⇡

�
3log(M2

PS/M
2
W )� 3 + log(r2` )

� 4log(r2E) +
2� 10r2`
1� r2`

log(r2` )

� 2

1 + r2`
1� r2`

log(r2` )log(r
2
E)

� 4

1 + r2`
1� r2`

Li2(1� r2` )

+

3 + r2E � 6r2` � 4rE(1� r2` )

(1� r2` )
2

log(1� rE)

+ rE
4� rE � 4r2`
(1� r2` )

2
log(r2` )

� rE
28r2` + 3rE � 22

2(1� r2` )
2

� 4

1 + r2`
1� r2`

Li2(rE)

�
(1)

where r` ⌘ m`/MPS and rE ⌘ 2�E/MPS.
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Cϕϕ
0 ðtÞ≡

X

~x

h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

!
1 −

m2
l

m2
π

"
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.

QED CORRECTIONS TO HADRONIC PROCESSES IN … PHYSICAL REVIEW D 91, 074506 (2015)

074506-7

attached at both ends to the quarks [diagrams 5(a)–5(c) and
6(a), (b), (d) and (e)], those in which the photon propagates
between one of the quarks and the outgoing lepton
[diagrams 5(e), 5(f) and 6(c)] and finally diagram 5(d)
which corresponds to the mass and wave-function nor-
malization of the charged lepton. We have already dis-
cussed the treatment of the wave-function renormalization
of the lepton in detail in Sec. III so we now turn to the
remaining diagrams.

1. The evaluation of diagrams Figs. 5(a)–5(c) and
Figs. 6(a), 6(b), 6(d) and 6(e)

We start by considering the connected diagrams
5(a)–5(c). For these diagrams, the leptonic contribution
to the amplitude is contained in the factor
½ūνlðpνlÞγ

νð1 − γ5ÞvlðplÞ$, and we need to compute the
Euclidean hadronic correlation function

C1ðtÞ ¼ −
1

2

Z
d3~xd4x1d4x2

× h0jTfJνWð0Þjμðx1Þjμðx2Þϕ†ð~x;−tÞgj0iΔðx1; x2Þ;
ð24Þ

where T represents time ordering, JνW is the V-A current
d̄γνð1 − γ5Þu and we take −t < 0. jμ is the hadronic
component of the electromagnetic current, and we find it
convenient to include the charges of the quarks Qf in the
definition of j,

jμðxÞ ¼
X

f

Qff̄ðxÞγμfðxÞ; ð25Þ

where the sum is over all quark flavors f. The factor of 1=2
is the standard combinatorial one.
The computations are performed in Euclidean space

and in a finite volume with the photon propagator Δ given
in Eq. (23) (or the corresponding expression for other
lattice discretizations). The absence of the zero mode in the
photon propagator implies a gap between mπ and the
energies of the other eigenstates. Provided one can separate
the contributions of these heavier states from that of the
pion, one can perform the continuation of the correlation
function in Eq. (24) from Minkowski to Euclidean space
without encountering any singularities. From the correla-
tion function C1ðtÞ we obtain the electromagnetic shift in
the mass of the pion and also a contribution to the physical
decay amplitude, as we now explain. For sufficiently large t
the correlation function is dominated by the ground state,
i.e. the pion, and we have

C0ðtÞ þ C1ðtÞ≃ e−mπt

2mπ
Zϕh0jJ0Wð0Þjπþi; ð26Þ

where the electromagnetic terms are included in all factors
[up to OðαÞ]. Writing mπ ¼ m0

π þ δmπ , where δmπ is the
OðαÞ mass shift,

e−mπ t ≃ e−m
0
π tð1 − δmπtÞ ð27Þ

so that C1ðtÞ is of the schematic form

C1ðtÞ ¼ C0ðtÞðc1tþ c2Þ: ð28Þ

By determining c1 we obtain the electromagnetic mass shift,
δmπ ¼ −c1, and from c2 we obtain the electromagnetic

FIG. 6. Disconnected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The curly line represents the photon,
and a sum over quark flavors q, q1 and q2 is to be performed. The labels (a)–(e) are introduced to identify the individual diagrams when
describing their evaluation in the text.

N. CARRASCO et al. PHYSICAL REVIEW D 91, 074506 (2015)

074506-8

calculation of δAPS

connected diagrams

virtual photons between quarks 
and/or lepton

disconnected diagrams

quenched QED: efsea = 0
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Cϕϕ
0 ðtÞ≡

X

~x

h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

!
1 −

m2
l

m2
π

"
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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* virtual photons between quarks: lattice calculation

 
δC qq( ) t( ) = − 1

2
0 T Jew

ρ (0) jµ
em x1( ) jµem x2( )φPS† x,−t( ){ } 0 Δem x1, x2( )

x , x1, x2
∑ pPS

ρ

MPS

photon propagator

(V-A) quark current

conserved 
em quark current

PS interpolating field

 
tree level:    C0 t( ) = 0 T Jew

ρ (0)φPS
† x,−t( ){ } 0

x
∑ pPS

ρ

MPS

large time distances:    C0 t( ) +δC qq( ) t( ) t>>a⎯ →⎯⎯ ZPSAPS
(qq)

2MPS

e−MPSt − e−MPS T −t( )⎡⎣ ⎤⎦

MPS = MPS
(0) +δMPS , A

PS

qq( ) = APS
(0) +δA

PS

qq( ), ZPS = ZPS
(0) +δZPS

δC qq( ) t( )
C0 t( ) t>>a⎯ →⎯⎯

δ ZPSAPS

qq( )⎡⎣ ⎤⎦
Z

PS

(0)A
PS

(0) + δMPS

M
PS

(0) f t( ) f t( ) ≡ MPS
(0) T

2
− t⎛

⎝⎜
⎞
⎠⎟
e−MPS

(0 )t + e−MPS
(0 ) T −t( )

e−MPS
(0 )t − e−MPS

(0 ) T −t( ) −1≈ −MPS
(0)t

***** δMPS  from the slope    and    δ ZPSAPS

qq( )⎡⎣ ⎤⎦  from the intercept *****
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K-meson

 δMPS  from the slope δ ZPSAPS

qq( )⎡⎣ ⎤⎦  from the intercept

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0 5 10 15 20 25 30 35

self energy (a)+(b)

exchange (c)

sum (a)+(b)+(c)

δ 
C(q

q)
 /

 C
0

t/a

B35.32

M
π
 ~ 300 MeV

M
K
 ~ 550 MeV

gauge ensembles from the European Twisted Mass Collaboration (ETMC)

* Nf = 2+1+1 dynamical sea quarks: two light mass-degenerate flavors, strange and charm sea quarks 
                                                           with masses close to their physical value 

* three values of the lattice spacing: 0.0885, 0.0815, 0.0619 fm

* pion masses simulated in the range between 220 and 470 MeV
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Cϕϕ
0 ðtÞ≡

X

~x

h0jTfϕð~0; 0Þϕ†ð~x;−tÞgj0i≃ ðZϕ
0 Þ2

2m0
π
e−m

0
π t:

ð20Þ

For convenience we take ϕ to be a local operator [e.g. at
ð~x;−tÞ in Eq. (19)], but this is not necessary for our
discussion. Any interpolating operator for the pion on the
chosen time slice would do equally well.
Having determined A0 and hence the amplitude

ūνlαðpνlÞðM0ÞαβvlβðplÞ, the Oðα0Þ contribution to the
decay width is readily obtained

Γtree
0 ðπþ → lþνlÞ ¼

G2
FjVudj2f2π

8π
mπm2

l

!
1 −

m2
l

m2
π

"
2

:

ð21Þ

In this equation we use the label tree to denote the absence
of electromagnetic effects since the subscript 0 here
indicates that there are no photons in the final state.

B. Calculation at OðαÞ
We now consider the one-photon exchange contributions

to the decay πþ → lþνl and show the corresponding six
connected diagrams in Fig. 5 and the disconnected dia-
grams in Fig. 6. By “disconnected” here we mean that there
is a sea-quark loop connected, as usual, to the remainder of
the diagram by a photon and/or gluons (the presence of the
gluons is implicit in the diagrams). The photon propagator
in these diagrams in the Feynman gauge and in infinite
(Euclidean) volume is given by

δμνΔðx1; x2Þ ¼ δμν

Z
d4k
ð2πÞ4

eik·ðx1−x2Þ

k2
: ð22Þ

In a finite volume the momentum integration is replaced
by a summation over the momenta which are allowed by the
boundary conditions. For periodic boundary conditions, we
can neglect the contributions from the zero-mode k ¼ 0 since
a very soft photon does not resolve the structure of the pion
and its effects cancel in Γ0 − Γpt

0 in Eq. (4). Although we
evaluate Γ0 þ Γ1ðΔEÞ [see Eq. (2)] in perturbation theory
directly in infinite volume,we note that the same cancellation
would happen if onewere to computeΓ1ðΔEÞ also in a finite
volume. Moreover from a spectral analysis we conclude that
such a cancellation also occurs in the Euclidean correlators
from which the different contributions to the decay rates are
extracted. For this reason in the following Γ0 and Γpt

0 are
evaluated separately but using the following expression for
the photon propagator in finite volume:

δμνΔðx1; x2Þ ¼ δμν
1

L4

X

k¼2π
Ln;k≠0

eik·ðx1−x2Þ

4
P

ρsin
2 kρ

2

; ð23Þ

where all quantities are in lattice units and the expression
corresponds to the simplest lattice discretization. k, n, x1 and
x2 are four component vectors, and for illustration we have
taken the temporal and spatial extents of the lattice to be the
same (L).
For other quantities, the presence of zero momentum

excitations of the photon field is a subtle issue that has to be
handled with some care. In the case of the hadron spectrum
the problem has been studied in [25] and, more recently in
[3,4], where it has been shown, at OðαÞ, that the quenching
of zero momentum modes corresponds in the infinite-
volume limit to the removal of sets of measure zero from
the functional integral and that finite volume effects are
different for the different prescriptions.
We now divide the discussion of the diagrams in Figs. 5

and 6 into three classes: those in which the photon is

FIG. 5. Connected diagrams contributing at OðαÞ to the amplitude for the decay πþ → lþνl. The labels (a)–(f) are introduced to
identify the individual diagrams when describing their evaluation in the text.
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* virtual photons between quarks and final lepton: lattice calculation

 E = m
2 + p

2 , E + Eν = MPS
(0)

 
p  injected via non-periodic b.c. S

 0, x( ) =  free twisted-mass lepton propagator

* expanding the (V-A) structure of the quark EW current: 

 
δC q( ) t( ) = ZA δC V0( ) t( ) +δC Vk( ) t( )⎡⎣ ⎤⎦ + ZV δC A0( ) t( ) +δC Ak( ) t( )⎡⎣ ⎤⎦ (twisted-mass renormalization)

 
δC q( ) t( ) t>>a⎯ →⎯⎯ ZPS

0( )

2MPS
0( ) δAPS

q( ) Tr p, pPS( ) e−MPS
(0 )t ±  backward signals⎡⎣ ⎤⎦

depending on the time/spatial components

 

δC q( ) t( ) = − 0 T Jew
ρ (0) jµ

em x1( )φPS† x,−t( ){ } 0 Δem x1, x2( )eEt2−ip⋅x2

x , x1, x2

∑

⋅ u pν( )γ ρ 1−γ 5( )S 0, x2( )γ µv p( ) v p( )γ σ 1−γ 5( )u pν( ) pPS
σ

MPS

⎡

⎣
⎢

⎤

⎦
⎥

 

tree-level:  C0
q( )
t( ) = C0 t( )Tr p, pPS( )

leptonic trace:  Tr p, pPS( ) = u pν( )γ ρ 1−γ 5( )v p( )v p( )γ σ 1−γ 5( )u pν( ) pPS
ρ

MPS

pPS
σ

MPS

[times the tree-level leptonic part]
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subtraction of IR divergence and of universal FSEs

δAPS
APS

0( ) →
δAPS L( )
APS

0( ) −
δA( pt ) L( )

APS
0( )

virtual photon emission from a point-like meson
using the lattice volume as IR regulator

arXiv:1610.09668 :
δA( pt ) L( )

APS
0( ) = bIR log MPSL( ) + b0 + b1

MPSL
+ b2 + b2

SD

MPSL( )2
+ b3 + b3

SD

MPSL( )3  

bi = bi r,
p( )     [known]

r = m MPS

* (unknown) structure-dependent FSEs start at order 1 L( )2 compare
up to 1 L  subtraction: b2 = b3 = 0
up to 1 L2 subtraction: b3 = 0

⎧
⎨
⎩

residual FSE still visible

 

δRπ ΔEγ
max( ) = 2π log

MZ

MW

⎛
⎝⎜

⎞
⎠⎟
+ 2δAπ

qq +δAπ
q

Aπ
0( )

−2δA
( pt ) L( )
Aπ

0( ) − 2δMπ

Mπ
(0)

+α em Z1 + Z2( ) +δΓ pt ΔEγ
max( )

ΔEγ
max ≅ 29.6 MeV

b2 + b2
SD << b2

SD-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

2 3 4 5 6 7 8 9 10

universal FSEs subtracted up to 1/L

"point-like" FSEs subtracted up to 1/L2

δ 
R π( Δ

E γm
ax

)

M
π
 L

ETMC data

M
π
 ~ 300 MeV

a ~ 0.089 fm

A40.20

A40.24
A40.32

y = m1 + m2 / M0^ 2
ErrorValue

0.00115920.012145m1 
0.016313-0.043477m2 

NA0.2729Chisq
NA0.98133R

y = m1 + m2 / M0^ 2
ErrorValue

0.00115860.012792m1 
0.015865-0.21544m2 

NA0.19621Chisq
NA0.99947R

π+ -> µ+ν[γ]

solid lines: A + B / (M
π
 L)2 fit
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* chiral extrapolation [Knecht et al., EPJC 12 (2000) 469]

δRπ ΔEγ
max( ) = 4πE µ( )+ 3

4π
log ξ

µ2
⎛
⎝⎜

⎞
⎠⎟
+ A1ξ + Da

2 +δΓ pt ΔEγ
max( ) + Kπ

FSE L( ) ξ ≡ Mπ
2

4π f0( )2

 
Kπ

FSE L( ) = K2

MπL( )2
+

K
2



EL( )2residual (structure-dependent) FSEs:  E, A1, D, K2, K
2

 :  5 free parameters

open markers: ETMC data with subtraction of 
                        universal FSEs up to 1/L

full markers: ETMC data with subtraction of both 
                      universal and structure-dependent
                      FSEs

δRπ
phys ΔEγ

max( ) = 0.0169 (8)stat+ fit (11)chiral (7)FSE (2)a2
= 0.0169 (8)stat+ fit (13)syst = 0.0169 (15)

δRπ
phys ΔEγ

max( )
δRπ

ChPT ΔEγ
max( ) = 0.9993 (26)

δRπ
ChPT ΔEγ

max( ) = 0.0176 (21)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.1 0.2 0.3 0.4 0.5 0.6

β = 1.90, L/a = 20

β = 1.90, L/a = 24

β = 1.90, L/a = 32

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

physical point

β = 1.90, L/a = 20 (FSE corr.)

β = 1.90, L/a = 24 (FSE corr.)

β = 1.90, L/a = 32 (FSE corr.)

β = 1.95, L/a = 24 (FSE corr.)

β = 1.95, L/a = 32 (FSE corr.)

β = 2.10, L/a = 48 (FSE corr.)

continuum limit

fit at β = 1.90

fit at β = 1.95

fit at β = 2.10

δ 
R π(Δ

E γm
ax

)

M
π+

   (GeV)

π+ -> µ+ν[γ]

* adopting different fitting functions (chiral vs. polynomial) with different FSE subtractions, one has

fit including the chiral log  χdof
2  0.7

ETMC data
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results for charged/neutral kaon and pion masses

universal FSE: −α emκ 2 +MπL( ) / L2

M
π +
2 −M

π 0
2⎡⎣ ⎤⎦

phys
= 1.226 (58)stat 96( )syst 10−3 GeV2

M
π +
2 −M

π 0
2⎡⎣ ⎤⎦

exp
= 1.2612 (1)10−3 GeV2

residual FSEs still visible

εγ
phys = 0.833 (22)stat 28( )syst

εγ
FLAG = 0.7 (3) [arXiv:1607.00299]

εγ =
M

K +
2 −M

K 0
2 +M

π 0
2 −Mπ+

2⎡⎣ ⎤⎦
QED

M
π +
2 −M

π 0
2

pion

kaon

δ SU (2)MK = −4.66 (6)stat 22( )syst

md −mu = 2.69 (5)stat 13( )systMeV

Hayakawa&Uno [PTP ’08]
BMW: QEDL on T4 [Science ’15]
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β = 1.90, L/a = 32

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

β = 1.90, L/a = 20 (FSE corr.)

β = 1.90, L/a = 24 (FSE corr.)

β = 1.90, L/a = 32 (FSE corr.)

β = 1.95, L/a = 24 (FSE corr.)

β = 1.95, L/a = 32 (FSE corr.)

β = 2.10, L/a = 48 (FSE corr.)

M
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2  - 
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π0
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data corrected for universal FSEs

lattice data
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fit β = 1.90, L/a = 24

fit β = 1.90, L/a = 32

fit β = 1.95, L/a = 24

fit β = 1.95, L/a = 32

fit β = 2.10, L/a = 48

continuum and infinite volume
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universal FSEs subtracted

ChPT fit
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β = 1.90, L/a = 20 (FSE corr.)
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β = 1.90, L/a = 32 (FSE corr.)

β = 1.95, L/a = 24 (FSE corr.)
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physical point
fit at β = 1.90
fit at β = 1.95
fit at β = 2.10
continuum limit

ε γ
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universal FSEs subtracted

ChPT fit

MS 2 GeV( )
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* K/π ratio:

 
δRKπ ΔEγ

max( ) = A0 − 3
4π
log Mπ

2

MK
2

⎛
⎝⎜

⎞
⎠⎟
+ A1ξ + A2ξ

2 + Da2 +δΓK
pt ΔEγ

max( )−δΓπ
pt ΔEγ

max( ) + KKπ
FSE L( )

 

KKπ
FSE L( ) =

K2

MKL( )2
+

K
2



E
K( )L( )2

− K2

MπL( )2
−

K
2



E
π( )L( )2

open markers: ETMC data with subtraction of universal
                        FSEs up to 1/L

full markers: ETMC data with subtraction of both 
                      universal and structure-dependent FSEs

δRKπ
phys ΔEγ

max( ) = −0.0137 (11)stat+ fit (6)chiral (1)FSE (1)a2
= −0.0137 (11)stat+ fit (6)syst = −0.0137 (13)

δRKπ
phys ΔEγ

max( )
δRKπ

ChPT ΔEγ
max( ) = 1.22 (26)

K + → µ+ν γ[ ] :ΔEγ
max ≅ 235.5 MeV

π + → µ+ν γ[ ] :ΔEγ
max ≅ 29.6 MeV

δRKπ
ChPT ΔEγ

max( ) = −0.0112 (21)

δ EM RKπ
ChPT ΔEγ

max( ) = −0.0069 (17)

δ SU (2)RKπ
ChPT = −0.0043 (11)

δRKπ ΔEγ( ) = δRK ΔEγ( )−δRπ ΔEγ( )

 χdof
2  1.1

 
A0, A1, A2, D, K2, K

2

 :  6 free parameters

[Cirigliano&Neufeld ’11]-0.02
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β = 1.90, L/a = 20

β = 1.90, L/a = 24

β = 1.90, L/a = 32

β = 1.95, L/a = 24

β = 1.95, L/a = 32

β = 2.10, L/a = 48

physical point

β = 1.90, L/a = 20 (FSE corr.)

β = 1.90, L/a = 24 (FSE corr.)

β = 1.90, L/a = 32 (FSE corr.)

β = 1.95, L/a = 24 (FSE corr.)

β = 1.95, L/a = 32 (FSE corr.)

β = 2.10, L/a = 48 (FSE corr.)

continuum limit

fit at β = 1.90

fit at β = 1.95

fit at β = 2.10

δ  
R K π

( Δ
Ε γm

ax
)

M
π+

   (GeV)

K+ -> µ+ν[γ] / π+ -> µ+ν[γ]

* adopting different fitting functions (chiral vs. polynomial) with different FSE subtractions, one has

fit including the chiral log

ETMC data

19



~ OK for the pion case (ΔEγmax ~ 30 MeV)

cuts in the photon energy for experimental data should be (re)considered

* maximum photon energy: ΔEγ ~ 10-20 MeV for the point-like assumption to be valid 

NOT OK for the kaon case (ΔEγmax ~ 235 MeV)
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π+ -> µ+ν[γ]
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ΔE
γ
   (MeV)

K+ -> µ+ν[γ] / π+ -> µ+ν[γ]
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two open issues

* removal of the qQED approximation                evaluation of (fermionic) disconnected diagrams
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semileptonic Kℓ3 decays

 

* IB correction 1+δ EM
K +δ SU (2)

Kπ( ) :not yet available from lattice, 
   but previous approach can be extended to K 3  decays (work is in progress ...)

* f+ 0( ) ≡ f+
K 0π −

q2 = 0( )  is till now the only relevant hadronic quantity

 
Γ K +,0 →π 0,−+ν( ) = GF

2M
K + ,0
5

192π 3 C
K + ,0
2 Vus f+

K 0π −

0( )
2
I
K

0( ) SEW 1+δ EM
K + ,0 +δ SU (2)

K + ,0π( )

 
* the phase-space integral I

K

0( ), depending on f+,0 q2( ) f+ 0( ),  is evaluated using the experimental data

- dedicated studies at q2 = 0 to avoid the systematic due to the momentum extrapolation (RBC/UKQCD coll.)

- however such a systematics is largely sub-leading (see arXiv:1602.04113) and the EM corrections requires 

   the knowledge of the momentum dependence of the ff’s

 

- experimental kinematical range: m
2  ≤ q2 ≤ MK −Mπ( )2

 0.129 GeV2

- Taylor expansion: f+,0 q2( ) f+ 0( ) = 1+ λ+,0
' q2

Mπ
2 +

1
2
λ+,0

'' q2

Mπ
2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
6
λ+,0

''' q2

Mπ
2

⎛
⎝⎜

⎞
⎠⎟

3

+ ...

* strong correlations among slopes, λ+,0
' ,and curvatures, λ+,0

'' , and ...
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* dispersive approach [Bernard et al. ’09]

f+
disp q2( ) f+ 0( ) = e

q2

Mπ
2 Λ++H q2( )⎡
⎣

⎤
⎦,         f0

disp q2( ) f+ 0( ) = e
q2

qCT
2 log(C )−G q2( )⎡

⎣
⎤
⎦

H q2( ) = Mπ
2q2

π
ds φ+ s( )
s2 s − q2 − iε( )qcut

2

∞

∫ ,         G q2( ) = qCT
2 qCT

2 − q2( )
π

ds φ0 s( )
s s − qCT

2( ) s − q2 − iε( )qcut
2

∞

∫

qcut
2 = MK +Mπ( )2

qCT
2 = MK

2 −Mπ
2

- in the elastic region φ+(0)  is the P(S)-wave phase shift of the Kπ( )I=1 2 scattering

- both  H q2( )  and G q2( )  can be evaluated numerically, obtaining:

λ+
' = Λ+

λ+
'' = Λ+

2 + 5.79 97( ) ⋅10−4

λ+
''' = Λ+

3 + 5.79 97( ) ⋅10−4 ⋅3Λ+ + 2.99 21( ) ⋅10−5

λ0
' = Mπ

2 log(C)− 0.0398 44( )⎡⎣ ⎤⎦ qCT
2

λ0
'' = λ0

'( )2 + 4.16 56( ) ⋅10−4

λ0
''' = λ0

'( )3 + 4.16 56( ) ⋅10−4 ⋅3λ0
' + 2.72 21( ) ⋅10−5

Λ+
exp. = 25.75 36( ) ⋅10−3

log(C)exp. = 0.1985 70( )KTeV, KLOE, NA48/2, ISTRA+: [Moulson ’14]
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Λ
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 x 103
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* momentum dependence calculated only by ETM Coll. [Carrasco et al., arXiv:1602.04113]

f+ 0( ) = 0.9709 46( ) Vus = 0.2230 4( )exp. 11( ) f+ 0( )

FlaviaNet '14
Λ+ = 25.75 36( ) ⋅10−3

log(C) = 0.1985 70( )

ETMC '16
Λ+ = 24.22 1.16( ) ⋅10−3

log(C) = 0.1998 138( )

results at the physical point
agree with experimental data

precision expected yo be 
improved in the next future

correlations among f+ 0( ),  Λ+  and log(C) 
have been calculated
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Vus f0 q
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more lattice calculations of the 
momentum dependence of ff’s

are called for
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CONCLUSIONS AND PERSPECTIVES

a new strategy to calculate QED corrections to hadronic processes, although very challenging, 
is within the reach of present lattice technologies

the first lattice results on the electromagnetic effects in the leptonic decay rates π+ → μ+ν[γ] 
and K+ → μ+ν[γ] have been already achieved

*

*

*

* lattice determinations of f
K + f

π + and f+ 0( )  have reached the precision of few permille 

* improvements can be expected in the next future from the production of new gauge ensembles
   and a precision at the permille level (or even below) is foreseeable in the future, but ... 

uncertainties on electromagnetic and strong SU(2) corrections are at the permille level

next target: evaluation of weak decay rates on the lattice including QCD and QED

δRπ
phys ΔEγ

max( ) δRπ
ChPT ΔEγ

max( ) = 0.9993 (26) δRKπ
phys ΔEγ

max( ) δRKπ
ChPT ΔEγ

max( ) = 1.22 (26)

extension to semileptonic Kℓ3 decays is in progress*
importance of studying the momentum dependence of the semileptonic Kℓ3 form factors

[PRD91 (2015) 074506]

[arXiv: 1610.09668]

[FLAG arXiv:1607.00299 and web update]
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analysis within the SMfor Nf = 2 and fK±/fπ± = 1.196(4) for Nf = 2+1+1, fK±/fπ± = 1.196(3) for Nf = 2+1,
fK±/fπ± = 1.192(9) for Nf = 2, respectively. These results are collected in the upper half
of Tab. 17. In the lower half of the table, we list the analogous results found by working
out the consequences of the CKM unitarity using the values of |Vud| and |Vus| obtained
from nuclear β decay and τ decay, respectively. The comparison shows that the lattice
result for |Vud| not only agrees very well with the totally independent determination based
on nuclear β transitions, but is also remarkably precise. On the other hand, the values
of |Vud|, f+(0) and fK±/fπ± which follow from the τ-decay data if the Standard
Model is assumed to be valid, are not all in agreement with the lattice results
for these quantities. The disagreement is reduced considerably if the analysis of
the τ data is supplemented with experimental results on electroproduction [198]:
the discrepancy then amounts to little more than one standard deviation. The
disagreement seems to disappear when recent implementations of the relevant
sum rules are considered [201].

Ref. |Vus| |Vud| f+(0) fK±/fπ±

Nf = 2 + 1 + 1 0.2248(8) 0.97440(18) 0.9631(39) 1.196(4)

Nf = 2 + 1 0.2248(6) 0.97440(13) 0.9631(31) 1.196(3)

Nf = 2 0.2256(19) 0.97423(44) 0.9597(83) 1.192(9)

β decay [185] 0.2258(9) 0.97417(21) 0.9588(42) 1.191(4)

τ decay [199] 0.2165(26) 0.9763(6) 1.0000(122) 1.245(12)

τ decay + e+e− [198] 0.2208(39) 0.9753(9) 0.9805(174) 1.219(18)

τ decay + e+e− [201] 0.2238(23) 0.9749(5) 0.9674(101) 1.202(10)

Table 17: The upper half of the table shows our final results for |Vus|, |Vud|, f+(0) and
fK±/fπ± , which are obtained by analysing the lattice data within the Standard Model. For
comparison, the lower half lists the values that follow if the lattice results are replaced by the
experimental results on nuclear β decay and τ decay, respectively.

4.6 Direct determination of fK± and fπ±

It is useful for flavour physics studies to provide not only the lattice average of fK±/fπ± , but
also the average of the decay constant fK± . The case of the decay constant fπ± is different,
since the experimental value of this quantity is often used for setting the scale in lattice QCD
(see Appendix A.2). However, the physical scale can be set in different ways, namely by using
as input the mass of the Ω-baryon (mΩ) or the Υ-meson spectrum (∆MΥ), which are less
sensitive to the uncertainties of the chiral extrapolation in the light-quark mass with respect
to fπ± . In such cases the value of the decay constant fπ± becomes a direct prediction of the
lattice-QCD simulations. It is therefore interesting to provide also the average of the decay
constant fπ± , obtained when the physical scale is set through another hadron observable, in
order to check the consistency of different scale setting procedures.

Our compilation of the values of fπ± and fK± with the corresponding colour code is pre-
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from K 2  decays:    Vus
Vud

f
K +

f
π +

= 0.2760 (4)

from K 3  decays:    Vus f+ 0( ) = 0.2165 (4)

from either 
f
K +

f
π +

 or f+ 0( )  one can obtain both Vus  and Vud  assuming CKM unitarity

triangles: from f+ 0( )             squares: from 
f
K +

f
π +

 

new implementation of the relevant sum rules 
[see Maltman’s and Banerjeei’s talks in WG1]
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gauge ensembles 

three values of the lattice spacing: 
a ~ 0.0885 (36), 0.0815 (30), 

0.0619 (18) fm

lattice sizes from 1.8 to 3 fm
3 < Mπ L < 6

pion masses from 225 to 500 MeV

the strange quark mass at each β 
is calculated using the physical ms  
mass and Zm obtained by ETMC 
in NPB 887 (2014)

ETMC gauge ensembles

ensemble � V/a4 aµsea = aµ` aµ� aµ� Ncfg aµs M⇡+ MK+ L M⇡L

(MeV) (MeV) (fm)

A30.32 1.90 323 ⇥ 64 0.0030 0.15 0.19 150 0.0236 278 564 2.9 4.0

A40.32 0.0040 100 318 573 4.6

A50.32 0.0050 150 351 581 5.1

A40.24 243 ⇥ 48 0.0040 150 325 579 2.1 3.5

A60.24 0.0060 150 387 594 4.2

A80.24 0.0080 150 444 615 4.8

A100.24 0.0100 150 496 636 5.4

A40.20 203 ⇥ 48 0.0040 150 331 583 1.8 3.0

B25.32 1.95 323 ⇥ 64 0.0025 0.135 0.170 150 0.0209 261 542 2.6 3.5

B35.32 0.0035 150 304 551 4.1

B55.32 0.0055 150 377 574 5.0

B75.32 0.0075 80 438 596 5.8

B85.24 243 ⇥ 48 0.0085 150 468 609 2.0 4.7

D15.48 2.10 483 ⇥ 96 0.0015 0.12 0.1385 100 0.0161 226 526 3.0 3.4

D20.48 0.0020 100 257 529 3.9

D30.48 0.0030 100 313 546 4.8

Table 1: Values of the simulated sea and valence quark bare masses for the 16 gauge

ensembles used in our PRACE project (see Ref. [1]).

References

[1] N. Carrasco et al. [ETM Coll.], Nucl. Phys. B 887 (2014) 19 [arXiv:1403.4504

[hep-lat]].

1

- Nf = 2+1+1 dynamical sea quarks: two light mass-degenerate flavors, strange and charm sea quarks close to the physical ones

- Wilson twisted-mass action for sea and valence up/down quarks, Osterwalder-Seiler action for valence strange (and charm) quark

- Iwasaki action for the gluons

- maximal twist guarantees an automatic O(a)-improvement for the above non-unitary setup

European Twisted Mass Collaboration (ETMC) setup
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δCPS t( ) = − 1

2
d 3xd 4x1d

4x2∫ 0 T φPS (0) jµ
em x1( ) jµem x2( )φPS† x,−t( ){ } 0 Δem x1, x2( )

 
tree level:    C0

PS t( ) = d 3x∫ 0 T φPS (0)φPS
† x,−t( ){ } 0

δCPS t( )
C0

PS t( ) t>>a⎯ →⎯⎯ 2
δ ZPS[ ]
Z

PS

(0) − δMPS

M
PS

(0) +
δMPS

M
PS

(0) f
PS t( ) f PS t( ) ≡ MPS

(0) T
2
− t⎛

⎝⎜
⎞
⎠⎟
e−MPS

(0 )t − e−MPS
(0 ) T −t( )

e−MPS
(0 )t + e−MPS

(0 ) T −t( ) ≈ −MPS
(0)t

δMPS  from the slope    and    δ ZPS[ ]  from the intercept

K-meson

 δMPS  from the slope

δ ZPSAPS

qq( )⎡⎣ ⎤⎦  from the intercept

* need to subtract δZPS
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two further e.m. corrections due to Wilson (twisted-mass) fermions

ef
2T

µ

f x( )
f , µ
∑ = ef

2 qf x( ) iγ 5τ 3 −γ µ

2
Uµ x( )qf x + µ( )+ qf x + µ( ) iγ 5τ 3 + γ µ

2
Uµ
† x( )qf x( )⎡

⎣⎢
⎤
⎦⎥f , µ

∑- tadpole vertex:

- shift of the critical mass: δmf
crq f x( )iγ 5τ 3qf x( )

PRD 87 (2013) 114505

approximation the neutral pion and neutral kaon masses
vanish for !mcr

f given by

where f ¼ fu; d; sg. From the numerical point of view,
the parameters !mcr

f have to be determined as accurately

as possible because they are needed in order to cancel a
linear ultraviolet divergence present in Eq. (69).
The numerical problem with Eq. (74) is that the associ-
ated determination of !mcr

f requires a chiral extrapola-

tion and this in turn introduces larger uncertainties
compared to the alternative method discussed in
Sec. IVA, namely, the numerical determination of the
electromagnetic critical masses based on the use of the
WTI of Eq. (41).
By applying the methods of Sec. V to the Ward-

Takahashi identity Wfð ~gÞ ¼ 0, i.e. by applying the differ-
ential operator ! to the full theory parity-odd correlator
[left-hand side of Eq. (41)],

one obtains the following alternative definition of !mcr
f :

Note that the two definitions of Eqs. (74) and (76) have the
same ‘‘structure’’ in terms of corrected correlators. Indeed,
Dashen’s theorem is a consequence of the chiral WTI of
the continuum theory and, concerning valence flavor dou-
blets, Eq. (41) is the chirally twisted version of one of these
relations. From the numerical point of view, however, the
great advantage of Eq. (76) with respect to Eq. (74) is that
the first does not require chiral extrapolations.

In the left panel of Fig. 3 we show the combination of
correlators appearing in Eq. (76) as a function of time for
the simulation at ! ¼ 4:20 and ðamudÞ0 ¼ 0:0020; see the
Appendix. As expected, coming from a WTI, the numeri-
cal data exhibit a very long plateau from which we obtain a
reliable determination of !mcr

f . We have similar results for

the other values of quark masses and lattice spacings
simulated in this paper. In the right panel of the same figure

FIG. 3 (color online). Left: determination of !mcr
f according to Eq. (76) for the simulation corresponding to ! ¼ 4:20 and

ðamudÞ0 ¼ 0:0020 (see the Appendix). As expected the combination of correlators appearing in Eq. (76) gives a constant plateau
in time from which we extract !mcr

f . Right: numerical results for !mcr
f for the different simulations. Black (diamonds) points

correspond to ! ¼ 3:80, dark magenta (circles) points correspond to ! ¼ 3:90, green (squares) points correspond to ! ¼ 4:05, and
blue (triangles) points correspond to ! ¼ 4:20. As expected the critical mass counterterms depend very mildly on the simulated
symmetric light quark mass ðamudÞ0: the small dependence is due to statistical fluctuations and (small) cutoff effects.
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δmf
cr =

from vector WI

♦= γ0        ⊗ = γ5

strong correlation 
between δmcr and 
tadpole terms

the sum is well  
determined
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�
+ · · · , (4.3)

where �G
K

= h0|s̄�
5

`(0)|�Ki. Note that the insertion of the QIB term L̂ constitutes

a flavour diagonal perturbation and that, consequently, the kaons are the lightest states

contributing both to C
KK

(~p, t) and to �C
KK

(~p, t). The analysis would be considerably

more complicated in the case of a perturbation (typically insertions of the weak hamil-

tonian) opening a decay channel for the kaons because the physical information would be

hidden into sub-leading exponential terms.

In our case, by studying the ratio of the two correlators of eqs. (4.3),

�C
KK

(~p, t) =
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KK

(~p, t)

C
KK
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= � = �

✓
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2E
K

◆
� t�E

K

+ · · · , (4.4)

it is possible to extract the leading QIB corrections to kaon energies and decay constants.

Indeed �E
K

appears directly in the previous equation as the “slope” with respect to t

whereas �F
K

can be extracted from the “intercept” according to

F
K

= (m
s

+m
ud

)
G

K

M2

K

,

�F
K

=
�m

ud

m
s

+m
ud

+ �G
K

� 2�M
K

. (4.5)

On a lattice of finite time extent T with quark fields satisfying anti-periodic boundary con-

ditions along the time direction and given our choice of the kaon source and sink operators,

the pseudoscalar densities, eq. (4.4) has to be modified according to

�C
KK

(~p, t) = �

 
G2

K

e�EKT/2

2E
K

!
+�E

K

(t� T/2) tanh [E
K

(t� T/2)] + · · · . (4.6)

As can be seen from figure 1, �C
KK

(~p, t) is determined with high precision, given the

strong statistical correlation existing between the numerator and the denominator of the

ratio in eq. (4.4). A consistency check of our procedure consists in verifying the dispersion

relation E2

K

(p) = p2 + M2

K

and in comparing the variation �E
K

(p) against its expected

behaviour �E
K

(p) = M
K

�M
K

/E
K

(p). Excellent agreement is found between numerical

data and the theoretical curves shown in figure 2 both for E2

K

(p), top-left panel, and

�E2

K

(p), top-right panel. In the bottom panels of figure 2 we also show that two di↵erent

definitions of �F
K

(blue and red points) extracted from correlators at several ~p-values give

consistent results. The second definition of F
K

and of �F
K

has been obtained by considering

the correlation function between the pseudoscalar density and the axial vector current

CA

0

KK

(t) =
X

~x

h¯̀�0�
5

s(x) s̄�
5

`(0)i =
F
K

G
K

2
e�EK t + · · · (4.7)

and its correction at first order in �m
ud

.

– 10 –

besides e.m. corrections at leading order in αem , we adopt the RM123 approach to evaluate the slope of 
the leading strong SU(2) corrections due to md ≠ mu, based on the insertion of the (isovector) scalar 
density in the isospin symmetric QCD limit 

JHEP 04 (2012) 124
PRD 87 (2013) 114505s

u
K+: ⊗ = d x( )d x( )− u x( )u x( )

 δ SU (2)MPS  from the slope

δ SU (2)APS  from the intercept(s)

MPS = MPS
(0) + (md −mu )δ SU (2)MPS

APS = APS
(0) + (md −mu )δ SU (2)APS
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ChPT fit: Hayakawa&Uno [PTP ’08]
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where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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∝Mπ
2

M
π +
2 −M

π 0
2⎡⎣ ⎤⎦

exp
= 1.2612 (1)10−3 GeV2

M
π +
2 −M

π 0
2⎡⎣ ⎤⎦

phys
= 1.226 (58)stat 96( )syst 10−3 GeV2
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εγ −

κ
L
MK −Mπ

4π f0
2C

= 4
3
+ 2Qsea + 3

C
⎛
⎝⎜

⎞
⎠⎟
A + Mπ

2

(4π f0 )
2 log Mπ

2

µ2

⎛
⎝⎜

⎞
⎠⎟
+ B µ( )⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ Da2 +

K
L3

ChPT fit: Hayakawa&Uno [PTP ’08]
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* subtraction of backward signals: C t( )eMPS
0( )t ≡ 1

2
C t( ) + C t −1( )−C t +1( )

eMPS
0( )
− e−MPS

0( )
⎡
⎣⎢

⎤
⎦⎥
eMPS

0( )t
t>>a⎯ →⎯⎯ const.

2-point plateau region

0.0
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2.0 10-6
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δC(ql) exp(M
π

(0) t)

backward signal subtracted

δC
(q

l) (t
) 

ex
p(

M
π(0

)  t
)

t/a
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M
π
 ~ 325 MeV

0
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tree level

backward signal subtracted

C 0(q
l) (t

) 
ex

p(
M

π(0
)  t

)

t/a

A40.24

M
π
 ~ 325 MeV

* after subtraction of backward signals:

 

δC q( ) t( )
C0

q( ) t( ) t>>a⎯ →⎯⎯ δAPS
q( )

APS
0( )
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O1
W −reg =O1

bare +α em Zi Oi
bare

i=1,5
∑

 

O1
bare = q2γ µ 1−γ 5( )q1νγ

µ 1−γ 5( )
O2

bare = q2γ µ 1+ γ 5( )q1νγ
µ 1−γ 5( ),     O3

bare = q2 1−γ 5( )q1ν 1+ γ 5( )
O4

bare = q2 1+ γ 5( )q1ν 1+ γ 5( ),            O5
bare = q2σ µρ 1+ γ 5( )q1νσ

µρ 1−γ 5( )

Z1 =
1

4π
5
2

log a2MW
2( )− 8.863⎡

⎣⎢
⎤
⎦⎥
Z1
QCD

Z2 =
1

4π
0.536[ ]Z2

QCD ,                              Z3 =
1

4π
1.607[ ]Z3

QCD

Z4 =
1

4π
−3.214[ ]Z4

QCD ,                            Z5 =
1

4π
−0.804[ ]Z5

QCD

Wilson fermions:

* Wilson twisted-mass fermions (rotation to the physical basis)

Zi
QCD =  non-perturbative 

             QCD corrections O α s( )

O1
bare⎡⎣ ⎤⎦ phys

W −reg
= O1

bare⎡⎣ ⎤⎦ phys +α em Z1 O1
bare⎡⎣ ⎤⎦ phys − Z2 O2

bare⎡⎣ ⎤⎦ phys − r Z3 O3
bare⎡⎣ ⎤⎦ phys − r Z4 O4

bare⎡⎣ ⎤⎦ phys{ }
 
r ≡ rq1

r         rq2
= −rq1( )Wilson r-parameters:

0 O5
bare PS = 0⎡⎣ ⎤⎦

to keep discretization errors on MPS 
at order O(a2m)

* average over r = ±1, since physical quantities cannot depend on r

chirality mixing
* EM corrections to the four-fermion effective theory generate UV divergencies that can be regularized  
   by multiplying the photon propagator by MW2/(MW2 - k2) (W-regularization)

* on the lattice a perturbative matching has been calculated at LO in αem     [PRD 91 (2015) 074506] 
    for lattice formulations breaking chiral symmetry

 δAPS = δAPS
qq +δAPS

q +α em Z1 + Z2( )APS0( )
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δAPS
APS

0( )
⎡

⎣
⎢

⎤

⎦
⎥

W −reg

= δAPS
APS

0( ) + Z1 + Z2
ZV

+ r Z3 − Z4( )MPS
0( )

m
ZPS

0( )

APS
0( )

Z1
QCD = Z2

QCD = ZV
Z3
QCD = Z4

QCD = ZA

“factorization approximation”
between QED and QCD 

vertex corrections

terms due to axial current don’t depend on r 
terms due to vector current do depend on r

mixings with O1, O2 don’t depend on r 
mixings with O3, O4 depend on r

0 O1
bare PS = − 0 O2

bare PS = APS
0( )

0 O3
bare PS = − 0 O4

bare PS = ZPS
0( )

mixings with O3 and O4 can be exactly cancelled out by averaging over r = ±1

similar result can be obtained using 
Z3QCD = Z4QCD ~ 0.7 ZA

30 % violation of the 
“factorization approximation”

subleading effect (~10-3) in 
pion decay and totally absent 

in the decay ratio K/π 

* the non-perturbative determination of  Z1QCD and Z2QCD is in progress
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subtraction of universal FSEs up to 1 L

π + → µ+ν γ[ ]
Rπ ΔEγ

max( ) = 4πE µ( )+ 3
4π
log ξ

µ2
⎛
⎝⎜

⎞
⎠⎟
+ A1ξ + Da

2 +δΓ pt ΔEγ
max( ) + Kπ

FSE L( )

 
Kπ

FSE L( ) = K2

MπL( )2
+

K
2



EL( )2

subtraction of point-like FSEs up to 1 L2

***** FSE subtraction under good control *****
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subtraction of universal FSEs up to 1 L subtraction of point-like FSEs up to 1 L2

***** FSE subtraction under good control *****

K + → µ+ν γ[ ] π + → µ+ν γ[ ]

 
RKπ ΔEγ
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π + → µ+ν γ[ ] K + → µ+ν γ[ ]
π + → µ+ν γ[ ]

pion and kaon/pion analyses

Rπ
phys ΔEγ

max( ) = 0.0169 (8)stat+ fit (11)chiral (7)FSE (2)a2
= 0.0169 (8)stat+ fit (13)syst
= 0.0169 (15)

RKπ
phys ΔEγ

max( ) = −0.0137 (11)stat+ fit (6)chiral (1)FSE (1)a2
= −0.0137 (11)stat+ fit (6)syst
= −0.0137 (13)

data set chiral log a2-term �2/d.o.f. Rphys
⇡

b2 = b3 = 0 yes yes 0.72 0.0153 (8)

no yes 0.75 0.0175 (8)

yes no 0.74 0.0148 (7)

no no 0.77 0.0171 (7)

b3 = 0 yes yes 1.00 0.0165 (8)

no yes 0.99 0.0188 (8)

yes no 0.95 0.0163 (7)

no no 0.94 0.0185 (7)

Table 2:

data set chiral log a2-term �2/d.o.f. Rphys
K⇡

b2 = b3 = 0 yes yes 1.07 -0.0132 (5)

no yes 1.04 -0.0144 (8)

yes no 0.96 -0.0130 (5)

no no 0.93 -0.0142 (10)

b3 = 0 yes yes 1.18 -0.0133 (11)

no yes 1.14 -0.0145 (13)

yes no 1.14 -0.0129 (17)

no no 1.04 -0.0143 (11)

Table 3:

References
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[hep-lat]].
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... It includes the universal short-distance electroweak correction obtained by Sirlin [18], the universal long-
distance correction for a point-like meson from Kinoshita [19], and corrections that depend on the hadronic 
structure [20]. We evaluate [it] using the latest experimentally-measured meson and lepton masses and coupling 
constants from the Particle Data Group [3], and taking the low-energy constants (LECs) that parameterize the 
hadronic contributions from Refs. [17], [21], [22]. The finite non-logarithmic parts of the LECs were estimated 
within the large-NC approximation assuming that contributions from the lowest-lying resonances dominate ...

... The uncertainty is dominated by that from theoretical estimate of the hadronic structure-dependent radiative 
corrections, which include next-to-leading order contributions of O(e2p2π,K) in chiral perturbation theory [17] ...

17. V. Cirigliano and I. Rosell, JHEP 10, 005 (2007).
18. A. Sirlin, Nucl. Phys. B196, 83 (1982).
19. T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).
20. M. Knecht et al., Eur. Phys. J. C12, 469 (2000).
21. B. Ananthanarayan and B. Moussallam, JHEP 06, 047 (2004).
22. S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C42, 403 (2005).

J. Rosner, S. Stone and R. Van der Water, arXiv:1509.02220 [minireview for PDG ’16]

Rπ ΔEγ
max( ) = 0.0176 (21)

RKπ ΔEγ
max( ) = −0.0069 (17) EM contribution only
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