The 09 of 14 july 2023, 8th IUPAP International conference on women in physics

Spectral effect of a monochromatique light on the performance of a silicon solar cell

R.Saré¹, I. Sourabié², M. Zoungrana¹, I. Zerbo¹

¹Laboratory of Thermal and Renewable Energies, Department of Physics, Faculty of Pure and Applied Sciences, University Joseph KI-ZERBO, Ouagadougou, Burkina Faso ²Laboratory of Research in Energetic and Space Meteorology, Department of Physics, Faculty of Science and Technology, University Norbert Zongo, Koudougou, Burkina Faso The aim of this work is to show the effect of the wavelength of the incident monochromatic light on the electrical parameters of a silicon solar cell

• 1- Modèle

• 2- Continuity equation

$$\frac{\partial^2 \delta(x,\lambda)}{\partial x^2} - \frac{\delta(x,\lambda)}{L_n^{*2}} = -\frac{G(x,\lambda)}{D_n^*}$$
(1)

$$G(x,\lambda) = \alpha(\lambda)\phi_0 \left[1 - R(\lambda)\right]e^{-\alpha(\lambda)x}$$
(2)

$$\delta(x,\lambda) = A_1 \cdot ch\left(\frac{x}{L_n}\right) + A_2 \cdot sh\left(\frac{x}{L_n}\right) - \frac{\alpha(\lambda) \cdot \varphi(\lambda) \cdot \left[1 - R(\lambda)\right]}{D_n\left[\alpha^2(\lambda) - L_n^{-2}\right]} \cdot e^{-\alpha(\lambda) \cdot X}$$
(3)

Figure 1: Silicon solar cell illuminated by monochromatic light

The electrical parameters (current density, voltage, power, output, effeiciency) are obtained by solving the continuity equation

Current Density

$$Jph(\lambda, Sf) = q \cdot D_n \cdot \frac{\partial \delta(\mathbf{x}, \lambda, Sf)}{\partial \mathbf{x}} \bigg|_{\mathbf{x}=0}$$
 (3)

$$P(\lambda, Sf) = Vph(\lambda, Sf) \cdot Jph(\lambda, Sf) (5)$$

Efficiency

• Voltage

$$Vph(\lambda, Sf) = V_T \cdot \ln\left(N_B \frac{\delta(x=0,\lambda, Sf)}{n_i^2} + 1\right)$$
(4)

$$\eta = \frac{P_m}{P_{ab}} (6) \qquad P_{ab} = \frac{\phi(\lambda) \left[1 - R(\lambda) \right] hc}{\lambda} (7)$$

 P_{ab} : power of the incident light absorbed by the solar cell

<u>**Table 1**</u> : Different colours or light and there corresponding wavelenght [2].

Colour	Wavelength (nm)
Red	622-780
Orange	597-622
Yellow	577-597
Green	492-577
Bleue	455-492
Violet	390-455

The spectrum of solar radiation extends from ultraviolet to infrared including the visible. The frequency ranges from 3.4×10^{16} Hz to 3×10^{11} Hz and the wavelength from 0.01 μ m to 1 mm, but photovoltaic conversion takes place only between 0.4 µm and 1.1 µm [1]. The last wavelength range corresponds to the visible and the infrared. The wavelengths of the visible extend from 0.4 µm (violet) to 0.78 µm (red) including the colors of rainbow while the wavelengths of infrared extend from 0.78 μ m to 1.1 μ m.

Figure 2: Variation of power, voltage and current density with different colours of monochromatic light

Figure 3: Variation of the efficiency versus of colours monochromatic light

- Results of simulation, using current density- voltage and power- voltage, showed that red colour light generates more electricity than other colours.
- The efficiency of PV cells or panels in general could be improved by exposure to red light as it has been shown experimentaly by Ogherohwo et al. [3]

References

[1] Ouedraogo A, Barandja V D B, Zerbo I, Zoungrana M, Ramde E, Bathiebo D J. Turk. J. Phys., 2017, 41 (4), 288-294, doi: 10.3906/fiz-1703-16.

[2] Neamen D. A. Semiconductor physics and devices: Basic principles. 3rd edition, New York : McGraw-Hill Higher Education, 2003, p. 28.
[3] Ogherohwo E. P, Barnabas. B, Alafiatayo.A.O, IJRCST, July 2015,3(4), ISSN:2347-5552.

Acknowledgement

Laboratory of Thermal and Renewable Energies (LETRE) ISP BU01

sarerama3@gmail.com

THANK YOU