Highlight of Belle (II) Activities

N Efficiency Summary (in %)

K. Rao, P. Shingade (Eng.), S. Mayekar, R. Thomas (Tech.) PhD student: S. Halder, S. Hazra, R. Tiwary

Master student: R. Mehta

DHEP Annual Meeting May 4-6, 2022

Probing one of the three frontiers

 $\Delta m.\Delta t \sim 1$

- Experiments at the Intensity
 Frontier indirectly probe new
 physics (NP) by studying the
 suppressed decays of subatomic
 particles like beauty and charm
 mesons as well as tau leptons
- ☐ Belle and BaBar were earlier flag bearers, and now the baton is passed to LHCb and Belle II

Study of B $\rightarrow \phi \phi K$ decays

- Expect no CP violation from the interference btw penguin and tree $(\eta_c \rightarrow \varphi \varphi)$ diagrams
- NP contributions in the loop can enhance CP asymmetry to the level of 40%

PLB 583, 285 (2004)

BF and CP asymmetry measured below the η_c threshold ($m_{\varphi\varphi} < 2.85~{\rm GeV}/c^2$):

$$\mathcal{B}(\mathrm{B}^{\pm} \to \varphi \varphi \mathrm{K}^{\pm}) = (3.43^{+0.48}_{-0.46} \pm 0.22) \times 10^{-6}$$

 $A_{\mathrm{CP}}(\mathrm{B}^{\pm} \to \varphi \varphi \mathrm{K}^{\pm}) = -0.02 \pm 0.11 \pm 0.01$

CP asymmetry in the η_c region $(m_{\phi\phi} \in [2.94,3.02] \text{ GeV}/c^2)$:

$$A_{\rm CP}({\rm B^{\pm}} \to \varphi \varphi {\rm K^{\pm}}) = -0.12 \pm 0.12 \pm 0.01$$

is consistent with no CP violation

- \square Measured BF for the $B^0 \rightarrow \varphi \varphi K^0$ decay is $(3.02^{+0.75}_{-0.66} \pm 0.20) \times 10^{-6}$
- \blacksquare Consistent with theory prediction that lies in the range $(1.3-4.3)\times10^{-6}$

Searching for baryon number violation

- ☐ Tau is the only lepton that can decay to hadrons
- Can potentially give rise to baryon number violating decays $\tau \to p\ell\ell'$ [$\ell^{(\prime)} = e, \mu$]; such processes will be a signature for NP e.g., supersymmetry, GUT or models with black holes
 - Performed a search for $\tau \to p\ell\ell'$ decays

PRD 102, 111101(R) (2020)

All channels	$\epsilon(\%)$	$N_{ m sig}^{ m UL}$	$\mathcal{B}\left(imes10^{-8} ight)$
$ au^- ightarrow \overline{p} e^+ e^-$	7.8	3.9	< 3.0
$ au^- ightarrow extit{pe}^- extit{e}^-$	8.0	4.1	< 3.0
$ au^- ightarrow \overline{p} e^+ \mu^-$	6.5	2.2	< 2.0
$ au^- ightarrow \overline{\it p} e^- \mu^+$	6.9	2.1	< 1.8
$\tau^- \to p \mu^- \mu^-$	4.6	3.1	< 4.0
$\tau^- \to \overline{p}\mu^-\mu^+$	5.0	1.5	< 1.8

- No evidence for a signal is found
 - Set 90% CL upper limits, improving LHCb limits by an order of magnitude in two channels
- Brand new limits set for four other decay channels

Talk of the town

- ☐ If one keeps mass terms aside, the SM does not distinguish between leptons of different flavor
- The ratio: $R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)}$

is expected to be one to an accuracy of $O(10^{-2})$

- ⇒ lepton flavor universality (LFU)
- New physics can affect these observables
- ✓ LHCb finds evidence for LFU violation

Measurement of R_{K*} at Belle

Test the LFU by measuring the ratio of $\mathcal{B}(B \to K^* \mu^+ \mu^-)$ and $\mathcal{B}(B \to K^* e^+ e^-)$, with the K^{*+} reconstructed in final states of $K^+ \pi^0$ and $K^0_S \pi^+$ and the K^{*0} in $K^+ \pi^-$ and $K^0_S \pi^0$

- Measured R_{K^*} in a number of q^2 bins including the one up to $19 \text{ GeV}^2/c^4$
- ☐ Similar performance for electron and muon mode (103 vs. 140 signal evt)
- \square R_{K*+} is measured for the first time

Results consistent with SM predictions with largest deviation found in the lowest q² bin,

where LHCb reports an R_{K*0} value differing from the SM expectation

JHEP 08 (2017) 055

Move to Belle II

- \square Mega collaboration ≈ 1100 researchers, 123 institutions, 26 nations
- ☐ Our participation encompasses:
 - a) Computing ⇒ Please refer to Prashant's talk
 - b) SVD operation, performance and upgrade ⇒ Tomorrow Sagar will talk about it
 - c) Physics analysis ⇒ Soumen will provide a glimpse tomorrow

Dataset and performance

Performance of SVD where our group played a leading role (and continues to do so)

Details will be in Sagar's talk

- ☐ Peak luminosity: 3.8×10³⁴cm⁻²s⁻¹ (world record)
- ☐ Data recorded: 330 fb⁻¹ of which a maximum of 190 fb⁻¹ is analysed
- ☐ Path to reach 2.0×10³⁵cm⁻²s⁻¹ has been defined
- ☐ Still large factors to arrive at target peak luminosity $(6.0 \times 10^{35} \text{cm}^{-2} \text{s}^{-1})$

N Efficiency Summary (in %)

An example decay where VXD is the key

 \square Perform a time-dependent study to measure the branching fraction and direct CP asymmetry in charmless $B^0 \to K^0 \pi^0$ decays

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} [1 + q\{\mathcal{A}_{CP}\cos(\Delta m_d \Delta t) + \mathcal{S}_{CP}\sin(\Delta m_d \Delta t)\}]$$

- □ In the SM, $\mathcal{A}_{CP} \approx 0$ and $\mathcal{S}_{CP} \approx \sin 2\beta$
- Further, branching fraction and \mathcal{A}_{CP} are inputs to an isospin sum rule proposed in PLB 627, 82 (2005) \Rightarrow null test for new physics

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = 0$$

Time-dependent study in a decay without any primary charged particle coming from B_{sig} is challenging and likely the sole preserve of an e^+e^-

Need good performance with neutrals and beam-spot constraint

Results on ${\mathcal B}$ and ${\mathcal A}_{CP}$ for $B^0 o K^0\pi^0$

- \blacksquare 4D fit comprising M_{bc} , ΔE , continuum suppression output, and Δt
- Use $B^0 \to J/\psi(\mu^+\mu^-)K_S^0$ as the control channel
- \square Fix the \mathcal{S}_{CP} value to current world average in order to maximize the

precision on \mathcal{A}_{CP}

Moving to radiative penguin decays

Branching fractions for $B \to K^* \gamma$ with $K^* \to K^+ \pi^-$, $K_S^0 \pi^0$, $K^+ \pi^0$ and $K_S^0 \pi^0$

- \Box Extract the signal yield from an unbinned maximum-likelihood fit to the ΔE distribution
- ☐ Branching fractions are in fair agreement with world averages

Mode	Signal yield	Efficiency (%)	$\mathcal{B}_{\text{meas}}$ [10 ⁻⁵]
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	454 ± 28	15.22 ± 0.03	$4.5\pm0.3\pm0.2$
$B^0 \to K^{*0} [K_{\rm S}^0 \pi^0] \gamma$	50 ± 10	1.73 ± 0.01	$ 4.4 \pm 0.9 \pm 0.6 $
$B^+ \to K^{*+}[K^+\pi^0]\gamma$	169 ± 18	4.84 ± 0.02	$ 5.0 \pm 0.5 \pm 0.4 $
$B^+ \to K^{*+} [K_{\rm S}^0 \pi^+] \gamma$	160 ± 17	4.23 ± 0.02	$5.4 \pm 0.6 \pm 0.4$

arXiv:2110.08219

Major systematic sources: fit model, mis-modeling of π^0/η veto, and selection variables in simulation (depending on the channel)

(hard photon from asymmetric π°/η faking signal γ)

✓ Update with full available dataset is ongoing to measure the branching fraction, CP violation and isospin asymmetry; may be noted that Belle has observed 3.1σ evidence for isospin violation PRL 119 (2017) 191802

What is the status of LFU?

USP: Belle II can

- a) provide essential independent checks of $R(K^{(*)})$ anomalies with few ab^{-1} data
- b) measure $R(X_s)$ for inclusive B decays
- c) provide independent measurements of absolute branching fractions for e and μ modes
- □ 2021 prelim results for $B^+ \to K^+ \ell^+ \ell^-$ with only 63 fb⁻¹: 2.7 σ significance for signal $\tilde{}$

- $\mathcal{B}(B \to K^* \mu^+ \mu^-) = (1.19 \pm 0.31^{+0.08}_{-0.07}) \times 10^{-6}$ $\mathcal{B}(B \to K^* e^+ e^-) = (1.42 \pm 0.48 \pm 0.09) \times 10^{-6}$ $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (1.25 \pm 0.30^{+0.08}_{-0.07}) \times 10^{-6}$ 0.94 ± 0.05 $1.03 \pm .19$ 0.99 ± 0.12
- ☐ Limited by the sample size
- ☐ Precision of both electron and muon modes in the same ballpark
 - Electron mode is off by 2.5σ wrt PDG; we expect it to be competitive with 1 ab⁻¹

PDG B x 106

What does future hold?

PTEP 2019 (2019) 12, 123C01

Observables	Belle	Belle II	Belle II	
	$0.71~{\rm ab}^{-1}$	$5 ab^{-1}$	$50\mathrm{ab}^{-1}$	Be
R_K ([1.0, 6.0] GeV ²)	28%	11%	3.6%	
$R_K (> 14.4 \text{GeV}^2)$	30%	12%	3.6%	
R_{K^*} ([1.0, 6.0] GeV ²)	26%	10%	3.2%	
R_{K^*} (>14.4 GeV ²)	24%	9.2%	2.8%	
R_{X_s} ([1.0, 6.0] GeV ²)	32%	12%	4.0%	
R_{X_s} (>14.4 GeV ²)	28%	11%	3.4%	
5			In	+ 1

By 2026 we would have got 5 ab⁻¹ of data that would allow us to probe LFU to $\mathcal{O}(10\%)$

Summary

- ☐ Focus on some recent analyses from Belle (II) where our group has played a major role
- A number of interesting studies that I have been unable to cover in this talk can be accessed from the following two links:

 https://belle.kek.jp/bdocs/b_journal.html
 https://confluence.desy.de/pages/viewpage.action?pageId=138001973

☐ Much more to come from these exciting experiments at Intensity

Frontier

> Stay tuned ...

Thanks very much for your attention

Belle II mind map

Belle II vs. LHCb

Observable	Expected th. accuracy	Expected exp. uncertainty	Facility
CKM matrix	accuracy	uncertainty	1
$ V_{us} [K \to \pi \ell \nu]$	**	0.1%	K-factory
$ V_{cb} [R \rightarrow \kappa \ell \nu]$ $ V_{cb} [B \rightarrow X_c \ell \nu]$	**	1%	Belle II
$ V_{cb} [B \rightarrow A_c \ell \nu]$ $ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	8 · 10-3	Belle II/LHCb
	V-12-03	1.5°	Belle II
ϕ_2	***	3°	LHCb
ϕ_3 CPV	V	a	LITCO
$S(B_s \to \psi \phi)$	**	0.01	LHCb
$S(B_s \to \psi \phi)$ $S(B_s \to \phi \phi)$	**	0.01	LHCb
$S(B_s \to \phi \phi)$ $S(B_d \to \phi K)$	***	0.05	
$S(B_d \to \phi K)$ $S(B_d \to \eta' K)$	***	0.03	Belle II/LHCb Belle II
$S(B_d \to \eta K)$ $S(B_d \to K^*(\to K_S^0 \pi^0) \gamma))$	***		Belle II
	***	0.03	
$S(B_s \to \phi \gamma))$		0.05	LHCb Dollo II
$S(B_d \to \rho \gamma))$	***	0.15	Belle II
A_{SL}^d	***	0.001	LHCb
A_{SL}^s	*	0.001	LHCb
$A_{CP}(B_d \rightarrow s\gamma)$,	0.005	Belle II
rare decays	**	204	D 11 TT
$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II
$\mathcal{B}(B \to D\tau\nu)$	**	3%	Belle II
$\mathcal{B}(B_d \to \mu \nu)$	**	6%	Belle II
${\cal B}(B_s o \mu\mu)$	***	10%	LHCb
zero of $A_{FB}(B \to K^* \mu \mu)$	**	0.05	LHCb
$\mathcal{B}(B \to K^{(*)} \nu \nu)$	***	30%	Belle II
$\mathcal{B}(B \to s\gamma)$		4%	Belle II
$\mathcal{B}(B_s \to \gamma \gamma)$	C25.07	$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)
$\mathcal{B}(K \to \pi \nu \nu)$	**	10%	K-factory
$\mathcal{B}(K \to e\pi\nu)/\mathcal{B}(K \to \mu\pi\nu)$	***	0.1%	K-factory
charm and τ			
$B(\tau \rightarrow \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II
$ q/p _D$	***	0.03	Belle II
$arg(q/p)_D$	***	1.5°	Belle II
		-	

- Great for neutral and missing energy modes
- Inclusive measurement: OK
- Excellent flavor tagging and K_S reconstruction

17

Something to keep in mind

200

100

5.200

6,000

5,300

5,400

 $m(K^+\mu^+\mu^-)$ (MeV c^{-2})

5,500

5,600

80

60 40

20

5,000

5,500

 $m(K^+e^+e^-)$ (MeV c^{-2})

- Belle (II) has got similar sensitivity both for electron and muon modes
- Electron mode is not as clean as the muon for LHCb (lower two plots)