

B meson decays to charmless baryonic final states at LHCb: results and future prospects

Eduardo Rodrigues University of Cincinnati

On behalf of the LHCb collaboration

Baryonic B decays – motivation

□ Inclusive branching fraction to baryonic final states ~ 7% of B total width !

- Most decay modes still to be studied / observed
- □ Threshold enhancement in baryon-antibaryon system observed in many decay modes [see e.g. "The physics of the B factories", Eur. Phys. J. C74 (2014) 3026]

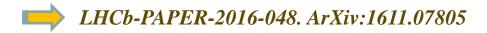
□ Many-body final states tend to have a larger BF than 3- and 2-body final states

$$\begin{aligned} \mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{+} \pi^{-}) &\gg \mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{0}) & \mathcal{B}(B \to \mathfrak{B}_{1c} \mathfrak{B}_{2c}) \sim 10^{-3} \\ &\gg \mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p}), & \gg \mathcal{B}(\overline{B} \to \mathfrak{B}_{c} \overline{\mathfrak{B}}) &\sim 10^{-5} \\ &\gg \mathcal{B}(\overline{B} \to \mathfrak{B}_{1} \overline{\mathfrak{B}}_{2}) &\lesssim 10^{-6} \end{aligned}$$

□ Theoretical description is a challenge and various models "in competition"

2002: 1st observation of a baryonic B decay

Many B⁰ and B⁺ baryonic decays observed and studied, with charm in the final state, or charmless
 Experimental observation of threshold enhancement in baryon-antibaryon invariant mass in several decay modes


□ 2013: 1st observation of a 2-body charmless baryonic mode: $B^+ \to p \overline{\Lambda}(1520)$ [PRL 113, 141801 (2014)] □ 2013: 1st evidence for CP violation in a baryonic B decay, seen in $B^+ \to p \overline{p} K^+$ [PRL 113, 141801 (2014)] □ 2013: 1st evidence for very suppressed $B^0 \to p \overline{p}$ with 2011 data analysis [JHEP 10 (2013) 005] □ 2014: 1st observation of a baryonic B_c decay [PRL 113, 152003 (2014)]

factories

-HC(b)

First evidence for the $B^+ \rightarrow p \overline{\Lambda}$ decay

Search for $B^+ \rightarrow p \overline{\Lambda}$ – motivation

□ 2-body baryonic B decays are rather suppressed \Rightarrow need LHCb, as not seen @ B factories □ 1st evidence for $B^0 \rightarrow p \,\overline{p}$ with 2011 data analysis [JHEP 10 (2013) 005] □ 1st observation of a 2-body charmless baryonic mode: $B^+ \rightarrow p \,\overline{\Lambda}(1520)$ [PRL 113, 141801 (2014)]

 $\Box B^+
ightarrow p \,\overline{\Lambda}\,$ seems like the next obvious decay to look for

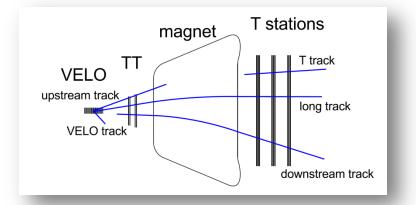
Experimental data :

	Belle	CLEO
90% C.L. upper limit	$3.2 imes 10^{-7}$	$2.6 imes10^{-6}$
Reference	PRD 75 (2007) 111101	PRD 59 (1999) 111101

□ Calculations predict a BF ~ 10⁻⁸-10⁻⁷

[PRD 91 (2015) 077501; PRD 89 (2014) 056003; PRD 66 (2002) 014020; NPB 345 (1990) 137]

Analysis strategy


Blinded search

 \Box Branching fraction measured relative to normalisation mode $B^+ \to K_S \pi^+$

- Topologically identical decay, large BF

$$\mathcal{B}(B^+ \to p\overline{\Lambda}) = \frac{N(B^+ \to p\overline{\Lambda})}{N(B^+ \to K^0_{\rm S}\pi^+)} \frac{\epsilon_{B^+ \to K^0_{\rm S}\pi^+}}{\epsilon_{B^+ \to p\overline{\Lambda}}} \frac{\mathcal{B}(K^0_{\rm S} \to \pi^+\pi^-)}{\mathcal{B}(\Lambda \to p\pi^-)} \mathcal{B}(B^+ \to K^0_{\rm S}\pi^+)$$

□ Similar selection for both decay modes

Data

□ Analysis on full run-I data sample

□ Data split according to year and V⁰ reconstruction category (*long* or *downstream* tracks)

- Studies proved a viable procedure to merge all subsamples for the mass fit

□ Decay chain fitted with V⁰ mass constrained

Search for $B^+ \rightarrow p \overline{\Lambda}$ – normalisation mode fit LHCb-PAPER-2016-048

Extended maximum likelihood fit considering

signal, cross-feed (very small), partially reconstructed backgrounds, combinatorial background

Double Crystal Ball functions for
$$B^+ \rightarrow K_S h^+ \text{ decays}$$

- □ Partially reconstructed backgrounds from $B_{(s)} \rightarrow K_S h^+ h^{(')-}$ decays
- Exponential for combinatorial background

5200

5400

 $m(K_{\rm S}^0 \pi^{\pm}) \, [{\rm MeV}/c^2]$

 $N(B^+ \to K^0_{a}\pi^+) = 930 \pm 34$

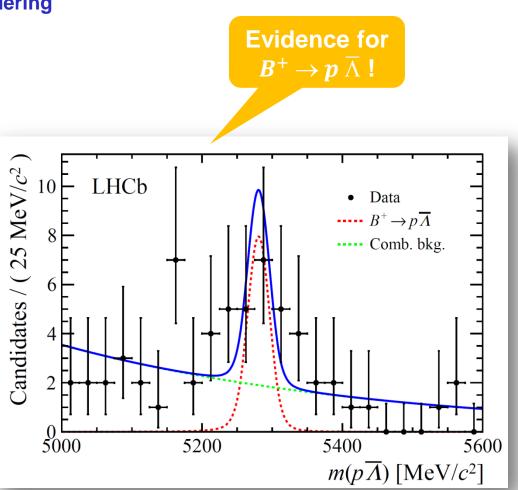
Candidates / (12 MeV/ c^2)

100

50

5000

5600


Extended maximum likelihood fit considering signal and combinatorial background

Fitted yield :

$$N(B^+ \to p\overline{A}) = 13.0^{+5.1}_{-4.3}$$

- Statistical significance of 4.1 σ calculated with toys
 - Marginal change when including systematic uncertainties of 6.7% affecting the signal yield

- Fit systematics (6.7%) are dominant, together with systematics on ratio of tracking efficiencies (6%)
- □ Total systematic uncertainties = 12.0%

Run-I blind search

 \Box First evidence for rare 2-body charmless baryonic decay $B^+ \rightarrow p \overline{\Lambda}$ decay

 \Box With a statistical significance of 4.1 σ

□ Branching fraction measured to be

$$\mathcal{B}(B^+ \to p\overline{\Lambda}) = (2.4^{+1.0}_{-0.8} \pm 0.3) \times 10^{-7}$$

- Compatible with most recent theoretical predictions [PRD 66 (2002) 014020; PRD 89 (2014) 056003]
- In tension with predictions in [NPB 345 (1990) 137; PRD 91 (2015) 077501]

□ Submitted to JHEP

Work triggered by publication of 1^{st} evidence for $B^0 \rightarrow p \ \overline{p}$ by LHCb.

First observation of a baryonic B_s decay

Search for baryonic B_s decays – motivation

□ Baryonic B decays observed for all B species *except* the B_s meson !

 \Box 2-body modes are rather suppressed \Rightarrow exploit 3-body final states

 $\Box B_s^0 \rightarrow p \overline{\Lambda} K^-$ is a good candidate given that the related mode $B^0 \rightarrow p \overline{\Lambda} \pi^$ has a large branching fraction ~ 3 x 10⁻⁶ and is well studied

Experimental data :

Decay Channel	BaBar $\mathcal B$ or UL	Belle \mathcal{B} or UL
$B^0 \rightarrow p \overline{\Lambda} \pi^-$	$(3.07 \pm 0.39) \times 10^{-6}$	$(3.23^{+0.33}_{-0.29} \pm 0.29) \times 10^{-6}$
$B^0 \rightarrow p \overline{\Lambda} K^-$	-	$< 8.2 \times 10^{-7}$
$B^0_s \rightarrow p \overline{\Lambda} K^-$	-	-
$B_s^0 \rightarrow p \overline{\Lambda} \pi^-$	-	-
$B^0 \rightarrow p \overline{\Sigma}^0 \pi^-$	-	$< 3.8 \times 10^{-6}$
$B^0_s \to p \overline{\Sigma}^0 K^-$	-	-

□ No theoretical predictions available to date

- Long or downstream tracks

Analysis strategy

 \Box Branching fraction measured relative to normalisation mode $B^0 o p \ \overline{\Lambda} \ \pi^-$

- Topologically identical decay, large BF

$$\mathcal{B}(B^0_s \to p\overline{\Lambda}K^-) = \frac{f_d}{f_s} \frac{N(B^0_s \to p\overline{\Lambda}K^-)}{N(B^0 \to p\overline{\Lambda}\pi^-)} \frac{\epsilon_{B^0 \to p\overline{\Lambda}\pi^-}}{\epsilon_{B^0_s \to p\overline{\Lambda}K^-}} \mathcal{B}(B^0 \to p\overline{\Lambda}\pi^-)$$

□ Similar selection for both decay modes

Data

□ Analysis on full run-I data sample

□ Data split according to year and V⁰ reconstruction category

- Studies proved a viable procedure to merge all subsamples for the mass fit
- □ Decay chain fitted with V⁰ mass constrained

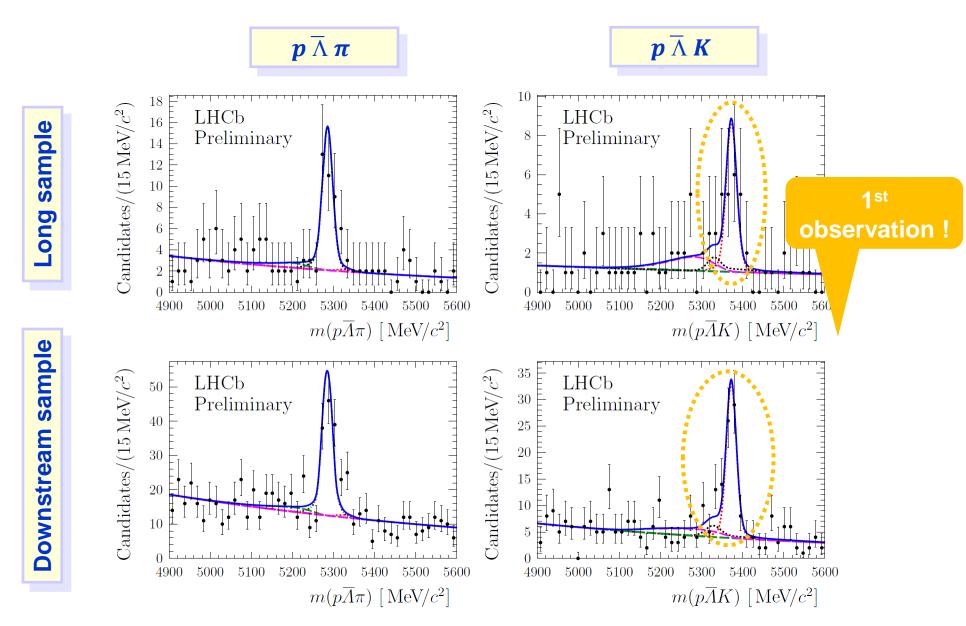
Background studies

 \Box Non resonant decays mode $B \rightarrow p \ \overline{p} \ \pi h \Rightarrow$ suppressed by Λ selection

□ Resonant decays:

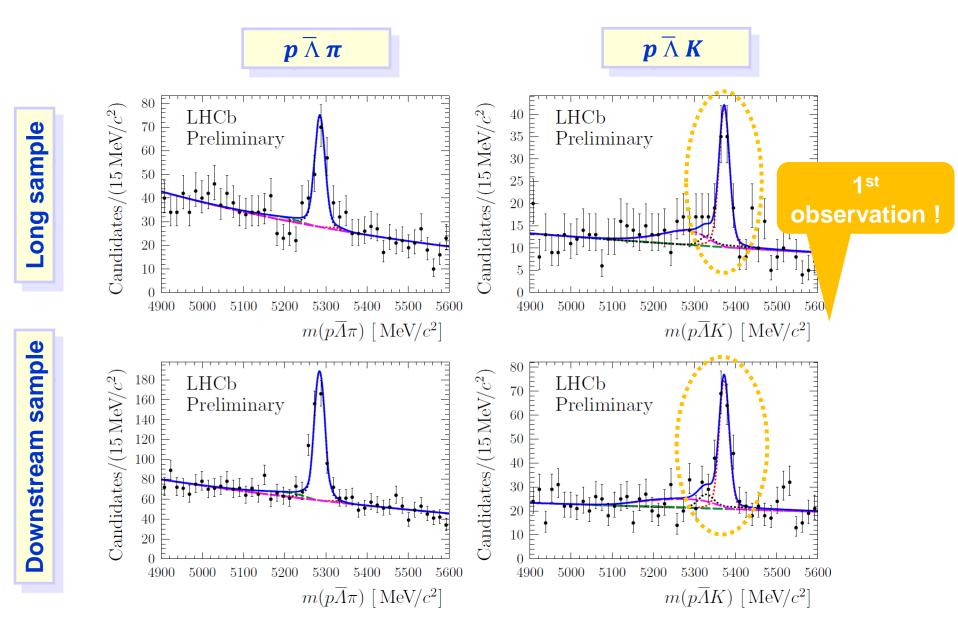
- Charmonia decaying to $p \ \overline{p} \Rightarrow$ suppressed by Λ selection
- Final states with a K_s instead of a Λ baryon \Rightarrow no contribution from such decays found in data
- **Cross-feed from misidentification:**
 - Pion-kaon misID between signal and control modes \Rightarrow crucial in fits since part of signal model
 - Proton-pion/kaon misID from $\Lambda_b \rightarrow \Lambda p \ \overline{p} \Rightarrow$ suppressed thanks to small branching fraction

& small tails into signal region


□ Partially reconstructed backgrounds:

- $B_{(s)} \rightarrow p \overline{\Sigma}{}^0 h^- \Rightarrow$ can sneak under signal peaks given small Σ -L mass difference ~ 77 MeV
- $B^0 \rightarrow p \overline{\Lambda} \rho^-$, $B_s \rightarrow p \overline{\Lambda} K^* \Rightarrow$ largely suppressed by selection

Fit strategy


□ Simultaneous fit to the 8 spectra : 2 final states x 2 years x 2 ∧ reconstruction categories

1st obs. of a baryonic B_s decay – 2011 fit proj.

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

1^{st} obs. of a baryonic B_s decay – 2012 fit proj.

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

1st obs. of a baryonic B_s decay – 2-part. proj.

LHCb-CONF-2016-016

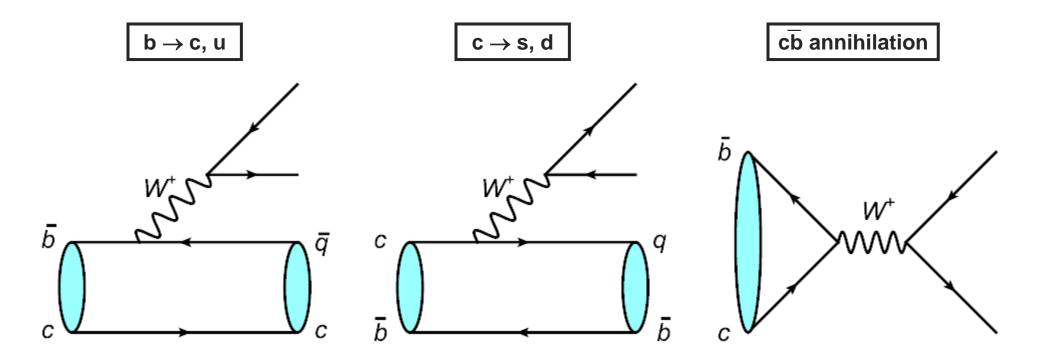
 $B^0 \rightarrow p \overline{\Lambda} \pi$ $B_s \rightarrow p \overline{\Lambda} K$ LHCb Preliminary *sPlot* weights / ((1.39 × 1.35) GeV⁴/ c^8) $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ $_{0}$ LHCb Preliminary sPlot weights / ((1.39 × 1.35) GeV⁴/ c^8) 30 20 10 $m^{2}(pK) = \frac{10^{12} m^{16}}{10^{12} m^{12}}$ $\frac{16}{2} \frac{16}{m^2} \left(\frac{10}{m^2} \right)^{12} \left(\frac{14}{c^4} \right)^{16} \left(\frac{12}{c^4} \right)^{12} \left(\frac{14}{c^4} \right)^{16} \left(\frac{12}{c^4} \right)^{16}$ $m^{10}_{2(p\bar{\Lambda})} [GeV^{2/c^{4}}]$ 12 $m^2(p\bar{A}) [GeV^2/c^4]$ 14 25 1st obs. of 30 / (20 MeV/ c^2) Sum of sWeights / $(20 \,\mathrm{MeV}/c^2)$ 50LHCb LHCb threshold 25 20 Preliminary Preliminary enhancement 30 in baryonic t of sWeights / **B**_s decays 20Sum 2.53 3.54.553.53 4.52.54 $m(p\overline{\Lambda}) \, [\,\text{GeV}/c^2]$ $m(p\overline{\Lambda}) \, [\,\text{GeV}/c^2]$ Eduardo F **TIFR**, Mumbai, India

First observation of a baryonic B_s decay

□ First observation of a baryonic B_s decay !

 \Box With a statistical significance of > 15 σ

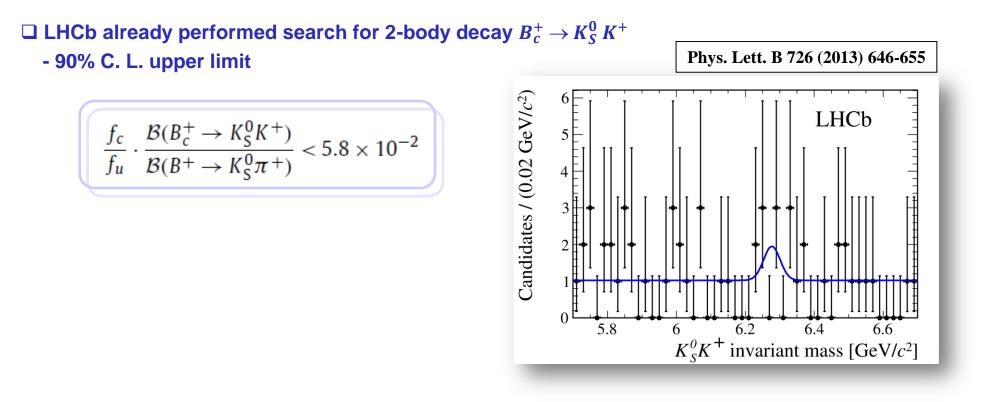
Branching fraction measured to be


(Note: BF calculated assuming that effective lifetime is the average B_s lifetime)

$$\mathcal{B}(B_s^0 \to p\overline{\Lambda}K^-) = \begin{bmatrix} 5.48^{+0.82}_{-0.80} \,(\text{stat}) \pm 0.60 \,(\text{syst}) \pm 0.51(\mathcal{B}) \pm 0.32(f_s/f_d) \end{bmatrix} \times 10^{-6}$$
Uncertainty on $B^0 \to p\overline{\Lambda}\pi$
Uncertainty on $B^0 \to p\overline{\Lambda}\pi$
Uncertainty on ratio of fragmentation probabilities

Result opens a new area of research on baryonic B decays

- So far baryonic Bs decays only studied theoretically [PRD 91 (2015) 077501; PRD 89 (2014) 056003] in case of 2-body final states following the 1st evidence for $B^0 \rightarrow p \ \overline{p}$ reported by LHCb in 2013 [JHEP10(2013)005]


Searches for charmless B_c decays

Charmless B_c decays proceed exclusively through annihilation !
 Rather suppressed but natural ground to study annihilation processes ...

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

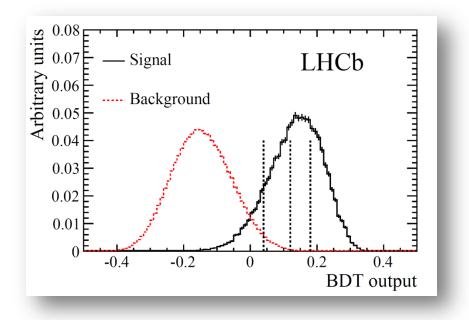
Search for charmless (baryonic) B_c decays - motivation

□ Searches for 3-body modes seem natural

 \Box Decays $B_c^+ \to K K \pi^+$ and $B_c^+ \to p \overline{p} \pi^+$ among simplest modes

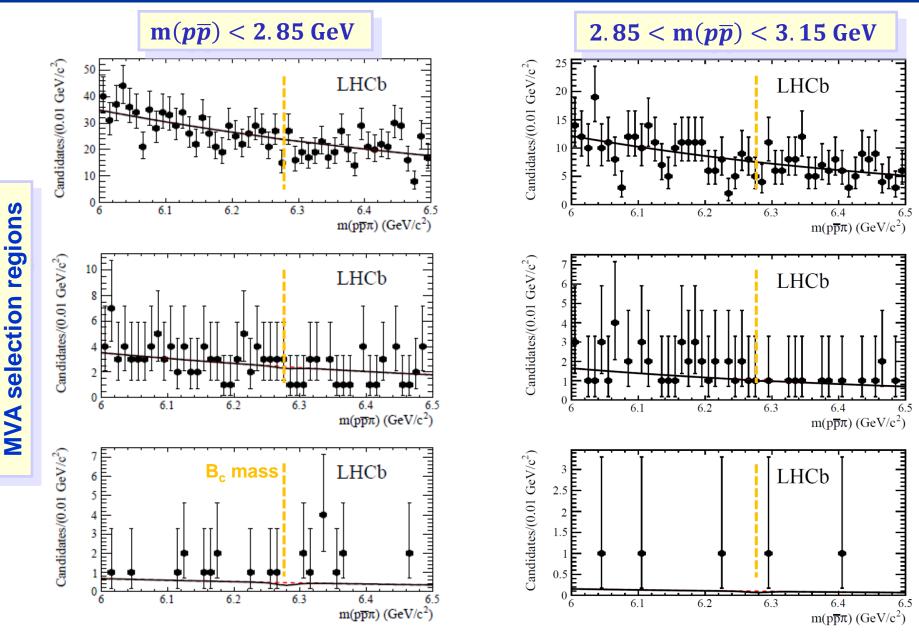
- Due to Cabibbo suppression $\left|\frac{V_{us}}{V_{ud}}\right| \sim 0.2$, final states with no net strangeness dominate

Motivation


□ 1st search for a charmless baryonic B_c decay

Analysis

- □ Full run-I data sample (3 fb⁻¹)
- \Box Branching fraction relative to that of $B^+ o p \ \overline{p} \ \pi^+$


Measurement sensitivity enhanced by considering 3 MVA regions

□ Focus on charmless region $m(p\overline{p}) < 2.85$ GeV, i.e. the annihilation region

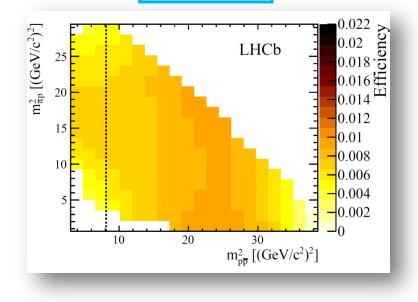
PLB 759 (2016) 313-321

Search for $B_c^+ o p \ \overline{p} \ \pi^+$

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

PLB 759 (2016) 313-321

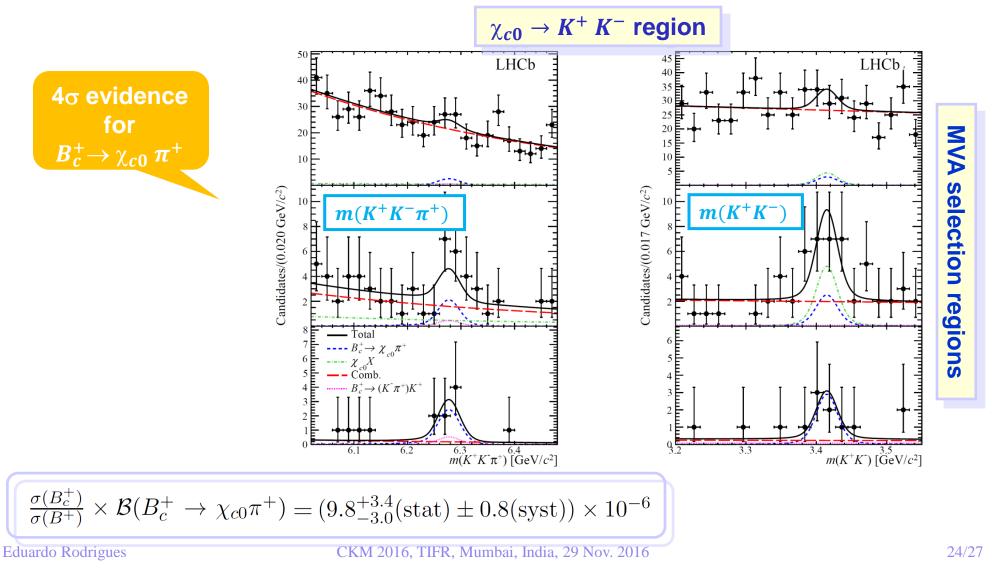
Search for $B_c^+ o p \ \overline{p} \ \pi^+$


Systematics totally dominated by lack of knowledge of distribution of events

and variation of efficiency

over the phase space of the decay

Source	$B_c^+ \rightarrow p \overline{p} \pi^+, m(p \overline{p}) < 2.85 \text{ GeV}/c^2$
PID	3.0
B_c^+ lifetime	2.0
Simulation	0.8
Detector acceptance	0.6
BDT shape	1.5
Hardware trigger correction	0.8
Fiducial cut	0.1
Modelling	15
$\mathcal{B}(B^+ \to p \overline{p} \pi^+)$	15
$\mathcal{B}(J/\psi \to p\overline{p})$	-


□ 95% C.L. upper limit

$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^+ \to p \overline{p} \pi^+) < 3.6 \times 10^{-8}$$

- In the charmless region $m(p\overline{p}) < 2.85 \text{ GeV}$
- In the kinematic region $p_T(B) < 20$ GeV and region 2. 0 < y(B) < 4.5

 \Box Analysis strategy very similar to that of the search for $B_c^+ o p \ \overline{p} \ \pi^+$

□ Very rich physics expected in the very large phase space available

□ These 2 recent LHCb searches for charmless B_c decays open a new area of activity

□ In run II the selection efficiencies are expected to improve by a factor 2 ! ⇒ up to ~ 50-100 mesonic annihilation decays ?

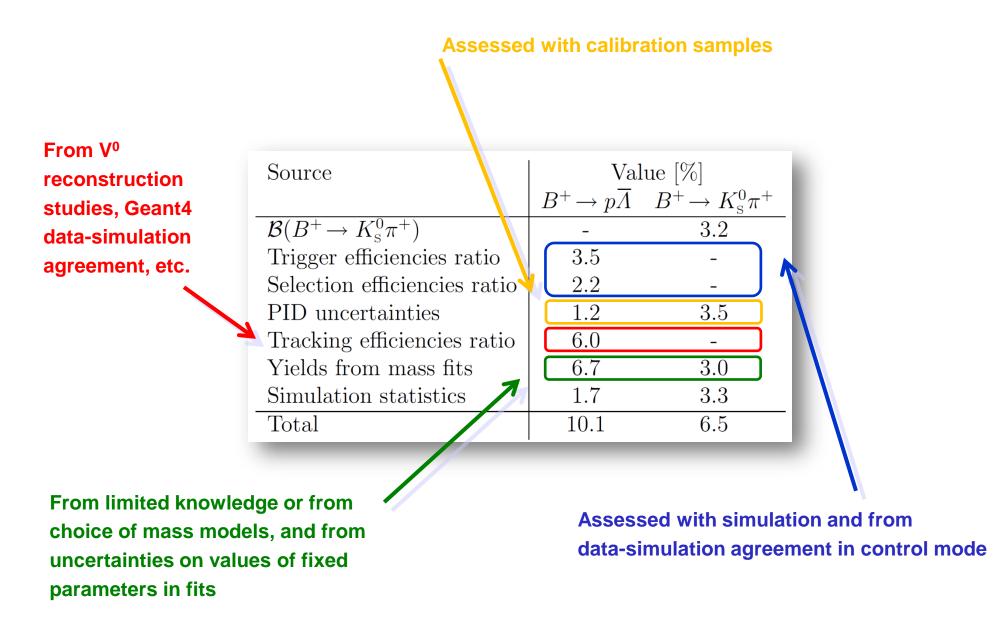
□ Physics potential of these decays can be better exploited with an upgraded dectector and 50 fb⁻¹ of collected data, though
 ⇒ up to ~ 1k events depending on the decay modes ... ?

□ Baryonic modes likely to be suppressed wrt mesonic modes by ~ 1 order of magnitude

□ Run I has been providing an amazing number of results !

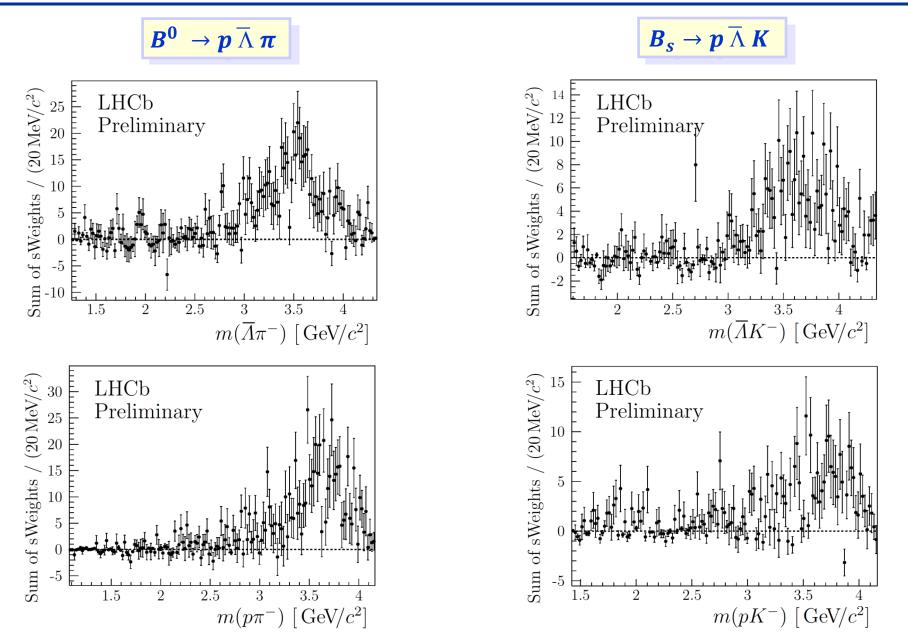
- Some totally unexpected, e.g the discovery of pentaquarks
- At times in areas where LHCb was not expected to be able to perform the analyses

□ Study of baryonic B decays not an exception


Run II will provide a lot more statistics

- □ The LHCb detector and data collection flow is much improved also !
- □ Expect a lot and hope for surprises !

Back-up slides Back-nb slides


First evidence for $B^+ \rightarrow p \overline{\Lambda}$ – systematic uncertainties

Eduardo Rodrigues

1st obs. of a baryonic B_s decay – 2-part. proj.

LHCb-CONF-2016-016

Eduardo Rodrigues

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

Charmless B_c decays ... realistically ...

Typical BFs for charmless modes
are in the range 10 ⁻⁸ -10 ⁻⁶

- With large theoretical uncertainties depending on the calculation approach

(2010)	depending on the calculation appr		
Phys. Rev. D 81, 014022 (2010)	Decay modes $(\Delta S = 0)$ $B_c \rightarrow \rho^+ \pi^0$ $B_c \rightarrow \rho^+ \eta$ $B_c \rightarrow \rho^+ \eta'$ $B_c \rightarrow \bar{K}^{*0}K^+$	BRs (10^{-7}) $0.5^{+0.1}_{-0.1}(m_c)^{+0.3}_{-0.2}(a_i)^{+0.2}_{-0.3}(m_0)$ $5.4^{+2.1}_{-1.2}(m_c)^{+0.9}_{-1.4}(a_i) \pm 0.0(m_0)$ $3.6^{+1.4}_{-0.8}(m_c)^{+0.6}_{-0.9}(a_i) \pm 0.0(m_0)$ $10.0^{+0.5}_{-0.6}(m_c)^{+1.7}_{-3.3}(a_i)^{+0.0}_{-0.2}(m_0)$	

pQCD approach Chin. Sci. Bull. 59 (2014) 3748-3759; arXiv:1401.0151 [hep-ph] $BRs(10^{-7})$ Decay Modes $f_L(\%)$ ϕ_{\parallel} (rad) ϕ_{\perp} (rad) $B_c \rightarrow \rho^+ \rho^0$ 0 $\begin{array}{c|c} B_{c} \to \rho^{+} \omega \\ B_{c} \to \overline{K}^{*0} K^{*+} \end{array} 10.6^{+3.8}_{-0.3} \\ 10.0^{+8.1}_{-4.8} \end{array}$ $92.9^{+2.0}_{-0.1}$ $3.86^{+0.40}_{-0.32}$ $4.43_{-0.25}^{+0.30}$ $92.0^{+3.6}_{-7.1}$ $3.68^{+0.51}_{-0.25}$ $3.76^{+0.51}_{-0.20}$ $\begin{array}{c} B_{\rm c} \to {\rm K}^{*0} \rho^+ \\ B_{\rm c} \to {\rm K}^{*+} \rho^0 \end{array} \begin{array}{c} -4.0 \\ 0.6^{+0.2}_{-0.1} \\ 0.3^{+0.1}_{-0.1} \end{array}$ $\begin{array}{c} 94.9^{+2.2}_{-1.5} \ 4.11^{+0.34}_{-0.28} \ 4.20^{+0.33}_{-0.22} \\ 94.9^{+1.4}_{-1.5} \ 4.11^{+0.34}_{-0.28} \ 4.20^{+0.33}_{-0.22} \end{array}$ $B_c \to K^{*+}\omega = 0.3^{+0.0}_{-0.2}$ $94.8^{+1.2}_{-1.3}$ $4.15^{+0.28}_{-0.35}$ $4.23^{+0.28}_{-0.26}$ $86.4_{-9.1}^{+4.9}$ $3.80_{-0.39}^{+0.51}$ $3.89_{-0.28}^{+0.48}$ $B_c \to \phi K^{*+} = 0.5^{+0.1}_{-0.3}$

 \Box Assuming ~ 10⁹ B_c events produced per year at LHCb interaction point

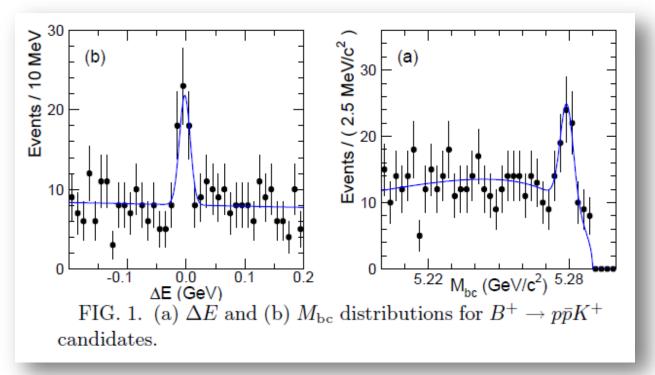
□ And a selection efficiency ~ 1%

□ One cannot realistically probe below ~ 10⁻⁶

 \Box Modes $B_c \rightarrow K^{*0}$ bar K⁺, K_S K⁺ seen as most promising ... and some being looked at ...

 \blacksquare A broad study of charmless B_c decays requires the LHCb upgrade ...

Eduardo Rodrigues

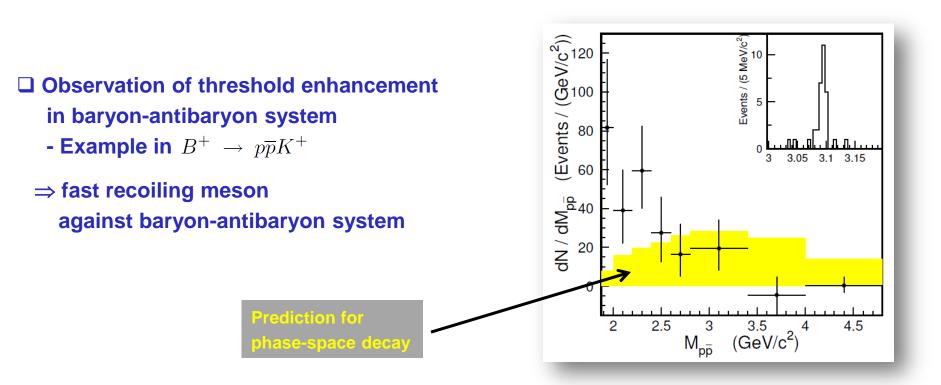

CKM 2016, TIFR, Mumbai, India, 29 Nov. 2016

1st evidence for a B decay to a baryonic final state

(Belle Collaboration)

We report the observation of the decay mode $B^{\pm} \to p\bar{p}K^{\pm}$ based on an analysis of 29.4 fb⁻¹ of data collected by the Belle detector at KEKB. This is the first example of a $b \to s$ transition with baryons in the final state. The $p\bar{p}$ mass spectrum in this decay is inconsistent with phase space and is peaked at low mass. The branching fraction for this decay is measured to be $\mathcal{B}(B^{\pm} \to p\bar{p}K^{\pm}) = (4.3^{+1.1}_{-0.9}(\text{stat}) \pm 0.5(\text{syst})) \times 10^{-6}$. We also report upper limits for the decays $B^0 \to p\bar{p}K_s$ and $B^{\pm} \to p\bar{p}\pi^{\pm}$.

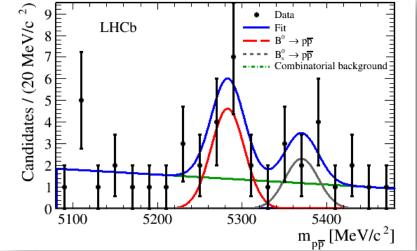
 $\mathcal{B}(B^+ \to p\bar{p}K^+) = (4.3^{+1.1}_{-0.9}(\text{stat}) \pm 0.5(\text{syst})) \times 10^{-6}$



Phys. Rev. Lett. 88, 181803 (2002)

□ Many-body final states tend to have a larger BF than 3- and 2-body final states

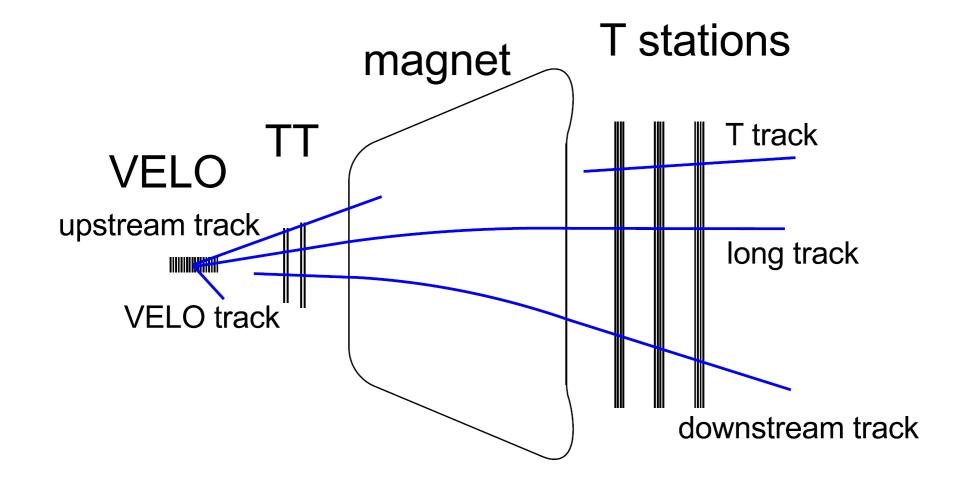
$$\begin{aligned} \mathcal{B}(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{+} \pi^{-}) \gg \mathcal{B}(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} \pi^{0}) \\ \gg \mathcal{B}(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p}), \end{aligned}$$


$$\mathcal{B}(\overline{B} \to \mathfrak{B}_{1c}\overline{\mathfrak{B}}_{2c}) \sim 10^{-3}$$
$$\gg \mathcal{B}(\overline{B} \to \mathfrak{B}_c\overline{\mathfrak{B}}) \sim 10^{-5}$$
$$\gg \mathcal{B}(\overline{B} \to \mathfrak{B}_1\overline{\mathfrak{B}}_2) \lesssim 10^{-6}$$

□ First evidence for a 2-body charmless baryonic B⁰ decay ! (significance: 3.3σ)

□ No significant B_s signal observed and published result improved previous search by 3 orders of magnitude

$$\begin{aligned} \mathcal{B}(B^0 \to p\overline{p}) &= \left(1.47 \,{}^{+0.62}_{-0.51} \,{}^{+0.35}_{-0.14}\right) \times 10^{-8} \text{ at } 68.3\% \text{ CL} \\ \mathcal{B}(B^0 \to p\overline{p}) &= \left(1.47 \,{}^{+1.09}_{-0.81} \,{}^{+0.69}_{-0.18}\right) \times 10^{-8} \text{ at } 90\% \text{ CL} \\ \mathcal{B}(B^0_s \to p\overline{p}) &= \left(2.84 \,{}^{+2.03}_{-1.68} \,{}^{+0.85}_{-0.18}\right) \times 10^{-8} \text{ at } 68.3\% \text{ CL} \\ \mathcal{B}(B^0_s \to p\overline{p}) &= \left(2.84 \,{}^{+3.57}_{-2.12} \,{}^{+2.00}_{-0.21}\right) \times 10^{-8} \text{ at } 90\% \text{ CL} \end{aligned}$$


 \Box This B⁰ \rightarrow p p branching fraction excluded all theoretical predictions by 1-2 orders of magnitude

- Motivated newer calculations (see e.g. previous page)

1st observation of a baryonic B_c decay

LHCb tracking detectors and track types

