New physics sensitivities of some $b ightarrow c(u) \ell u_\ell$ decay modes

Barilang Mawlong ¹, Karthik Jain

School of Physics University of Hyderabad

8th International Conference on Women in Physics (ICWIP), July 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

¹Presenter

Theoretical Framework

- ► Decay modes considered : $B_s \rightarrow D_s^{**} \ell \nu_\ell$ $(D_s^{**} \in \{D_{s0}^*, D_{s1}^*, D_{s1}, D_{s2}^*\})$ and $B \rightarrow \eta^{(\prime)} \ell \nu_\ell$.
- Effective Lagrangian for $b \rightarrow (q = c, u) \ell \nu_{\ell}$ transitions including new physics (NP) contributions is ²

$$\begin{split} \mathcal{L}_{eff} &= -\frac{4\,G_F}{\sqrt{2}}\,V_{qb}\left[(1+C_{V_L}^{\ell})O_{V_L}^{\ell}+C_{V_R}^{\ell}O_{V_R}^{\ell}+C_{S_L}^{\ell}O_{S_L}^{\ell} \right. \\ &+ C_{S_R}^{\ell}O_{S_R}^{\ell}+C_T^{\ell}O_T^{\ell}\right]+h.c., \end{split}$$

with fermionic operators defined as

$$\begin{aligned} O_{V_L}^{\ell} &= (\bar{q}\gamma^{\mu}P_Lb)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell) \quad, \quad O_{V_R}^{\ell} &= (\bar{q}\gamma^{\mu}P_Rb)(\bar{\nu}_{\ell}\gamma_{\mu}P_L\ell), \\ O_{S_L}^{\ell} &= (\bar{q}P_Lb)(\bar{\nu}_{\ell}P_R\ell) \quad, \quad O_{S_R}^{\ell} &= (\bar{q}P_Rb)(\bar{\nu}_{\ell}P_R\ell), \\ O_{T}^{\ell} &= (\bar{q}\sigma^{\mu\nu}P_Lb)(\bar{\nu}\ell\sigma_{\mu\nu}P_R\ell) \end{aligned}$$

and $C_i^{\ell}(i = V_L, V_R, S_L, S_R, T)$ are corresponding Wilson coefficients.

$B_s \rightarrow D_s^{**} \ell \nu_\ell$

 \blacktriangleright The differential decay rate for $B_s \to D_s^{**} \ell \nu$ is 3

$$\begin{aligned} \frac{d\Gamma}{dq^2} &= (1+C_{V_L})^2 \frac{G_F^2}{(2\pi)^3} |V_{cb}|^2 \frac{\sqrt{\lambda}(q^2-m_\ell^2)^2}{24M_{B_S}^3 q^2} \times \left[HH^{\dagger} \left(1+\frac{m_\ell^2}{2q^2} \right) \right. \\ &+ \left. \frac{3m_\ell^2}{2q^2} \left\{ H_t^{SM} \left(1+(C_{S_R}\pm C_{S_L}) \frac{q^2}{m_\tau(m_b\mp m_c)} \right) \right\}^2 \right] \end{aligned}$$

The ratio of decay rates is

$$R(D_s^{**}) = rac{rac{d\Gamma}{dq^2}(NP)}{rac{d\Gamma}{dq^2}(SM)}$$

► The best fit values of vector C_{V_L} and scalar $C_{S_{L(R)}}$ Wilson coefficients are obtained using a χ^2 -fit method to the experimentally measured values of $R_{D^{(*)}}$, $R_{J/\psi}$, $P_{\tau}^{D^*}$ and $F_L^{D^*-4}$.

³F. U. Bernlochner, and Z. Ligeti, Phys. Rev. D 95, 014022 (2017)

⁴C. P. Haritha, K. Jain, B. Mawlong, Eur. Phys. J. C 83:136 (2023) < □ > < □ > < □ > < ≡ > < ≡ > < ≡ > < ∞ < <

 q^2 -dependence of differential branching fraction of $B_s \to D_s^{**} \tau \nu_\tau$ in the presence of vector coupling.

 q^2 -dependence of differential branching fraction of $B_s \to D_s^{**} \tau \nu_\tau$ in the presence of scalar couplings.

The behaviour of $R(D_s^{**})$ in the presence of scalar couplings.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 善臣 = のへぐ

$B \to \eta^{(\prime)} \ell \nu_{\ell}$

- ► For $B \to \eta^{(\prime)} \ell \nu_{\ell}$, the q^2 -dependent observables like $\frac{dB}{dq^2}$, P_F^{ℓ} , A_{FB} and C_F^{ℓ} ⁵ are analyzed by constraining NP couplings.
- The parameter space of new couplings is obtained using available experimental measurements of semileptonic and pure leptonic B meson decays. ⁶
- ▶ Using isospin symmetry, the form factors of $B \rightarrow \eta^{(\prime)}$ can be obtained from those of $B \rightarrow \pi$. The $B \rightarrow \pi$ form factors are obtained from lattice QCD using the BCL *z*-parametrization ⁷

⁵D. Becirevic et. al. JHEP 05 175 (2021)

⁶R. L. Workman et. al. PTEP 2022:083C01(2022)

 q^2 -dependence of differential branching fraction in the presence of vector coupling for $B \to \eta \tau \nu ({\rm left})$ and $B \to \eta' \tau \nu_{\tau} ({\rm right}).$

Conclusion

- Analysis of B_s → D^{**}_sℓν_ℓ and B → η^(')ℓν_ℓ modes provides complementary information on the structure of new physics, particularly in distinguishing various new physics scenarios.
- The current analysis of $b \rightarrow c(u)$ transitions show good scope for exploring new physics. With the availability of more experimental results in the future, better constraints can be expected.
- Differential branching ratio (*dBR*) of B_s → D^{**}_s (b → c) modes display more sensitivity to the new coupling C_{VL} than the scalar couplings C_{S_{L(R)}}. However, better theoretical understanding of form factors is needed which will help in reducing SM uncertainties.
- ► For the $B \rightarrow \eta^{(\prime)} \ell \nu_{\ell}$ modes, most of the observables are sensitive to new interactions, except for A_{FB} with respect to the scalar C_{S_l} coupling.
- ▶ In some NP models, NP couplings of $b \rightarrow u$ transitions can be related to that of $b \rightarrow c$ transitions. The constraints on $b \rightarrow c$ Wilson coefficients can be used in analysing NP sensitivities of various $b \rightarrow u$ modes (Future work).

THANK YOU

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで