A Standard and Model Higgs

Manas Maity Visva-Bharati

Outline

- The Standard Model
- Higgs Before LHC
- Higgs Production & Decay at LHC

The Detective Work

- The Dirty Picture
- The Tools For Detection
- Analysis Strategy

Results

- Observation of Higgs
- Properties of Higgs

Conclusion

The Standard Model

- A working model based on Quantum Field Theory
- Describes elementary particles and their interactions Gravity not included
- 12 fermions 6 quarks, 6 leptons
- γ , W^{\pm} , Z, g gauge bosons mediate interactions

The Standard Model

- A working model based on Quantum Field Theory
- Describes elementary particles and their interactions Gravity not included
- 12 fermions 6 quarks, 6 leptons
- γ , W^{\pm} , Z, g gauge bosons mediate interactions
- Higgs (complex scalar) field generates mass of all particles
- H^0 $(J^P = 0^+)$ one Higgs doublet and one physical Higgs boson
- except Higgs all SM particles were discovered before LHC started

Higgs @ 2012

- Electroweak precision data from LEP, SLC, Tevatron, ... established SM as a valid model
- Prediction: $m_H \le 152 \text{ GeV}$ at 95% CL; CERN-PH-EP-2010-095 (2010)
- LEP exclusion: $m_H \leq 114.4 \text{ GeV}$ at 95% CL;
- Tevatron exclusion: $162 \ge m_H \le 166 \text{ GeV}$ at 95% CL;

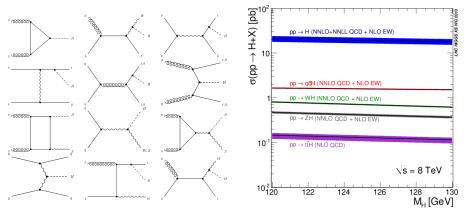
PRL 104 (2010) 061802

PLB 565 (2003) 61

- CMS exclusion: $127 \ge m_H \le 600$ GeV at 95% CL; Phys. Lett. B 710 (2012) 26
- ATLAS exclusion: 111.4 116.4, 119.4 122.1, and 129.2 541 GeV at 95% CL.
 Phys. Lett. B 716 (2012) 1

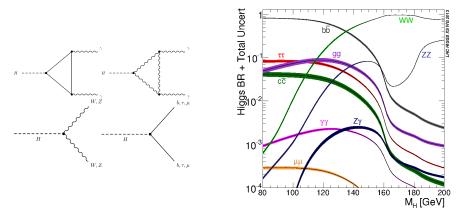
Higgs @ 2012

- Electroweak precision data from LEP, SLC, Tevatron, ... established SM as a valid model
- Prediction: $m_H \le 152 \text{ GeV}$ at 95% CL; CERN-PH-EP-2010-095 (2010)
- LEP exclusion: $m_H \leq 114.4 \text{ GeV}$ at 95% CL;
- Tevatron exclusion: $162 \ge m_H \le 166 \text{ GeV}$ at 95% CL;


PRL 104 (2010) 061802

PLB 565 (2003) 61

- CMS exclusion: $127 \ge m_H \le 600$ GeV at 95% CL; Phys. Lett. B 710 (2012) 26
- ATLAS exclusion: 111.4 116.4, 119.4 122.1, and 129.2 541 GeV at 95% CL.
 Phys. Lett. B 716 (2012) 1


2012 - Very little space to hide for Higgs!

SM Higgs Production: Leading Order Diagrams

 $\begin{array}{l} gg \rightarrow H \mbox{ (ggF), } qq \rightarrow qqH \mbox{ (VBF), } qq \rightarrow \textit{VH}, \mbox{ } gg \rightarrow \textit{ZH}, \\ qq, \mbox{ } gg \rightarrow t\bar{t}H, \mbox{ } b\bar{b}H \end{array}$

SM Higgs Decay: Leading Order Diagrams

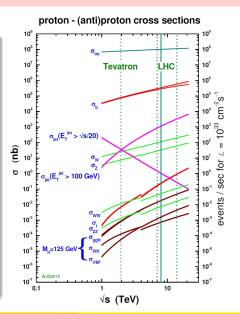
Decay modes of *H*: $\gamma\gamma$, W^+W^- , *ZZ*, $q\bar{q}$, $\ell^+\ell^-$

Manas Maity (Visva-Bharati)

Standard Model Higgs: Xsection & Decay BR

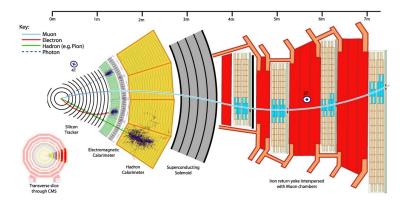
Production	Cross section [pb]		Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s}=8~{ m TeV}$	calculation
ggF	$15.0\ \pm 1.6$	$19.2\ \pm 2.0$	NNLO(QCD) + NLO(EW)
VBF	$1.22\ \pm 0.03$	$1.58\ \pm 0.04$	NLO(QCD+EW) + APPROX. NNLO(QCD)
WH	$0.577\ \pm 0.016$	$0.703 \ \pm 0.018$	NNLO(QCD) + NLO(EW)
ZH	$0.334\ \pm 0.013$	$0.414\ \pm 0.016$	NNLO(QCD) + NLO(EW)
[ggZH]	$0.023 \ \pm 0.007$	$0.032 \ \pm 0.010$	NLO(QCD)
ttH	$0.086 \ \pm 0.009$	$0.129 \ \pm 0.014$	NLO(QCD)
tH	$0.012 \ \pm 0.001$	$0.018 \ \pm 0.001$	NLO(QCD)
bbH	$0.156 \ \pm 0.021$	$0.203\ \pm 0.028$	5FS NNLO(QCD) + 4FS NLO(QCD)
Total	$17.4\ \pm 1.6$	$22.3\ \pm 2.0$	

Branching fraction [%]
$57.5~\pm1.9$
$21.6\ \pm 0.9$
$8.56\ \pm 0.86$
$6.30\ \pm 0.36$
$2.90\ \pm 0.35$
$2.67\ \pm 0.11$
$0.228\ \pm 0.011$
$0.155\ \pm 0.014$
$0.022 \ \pm 0.001$


arXiv:1307.1347

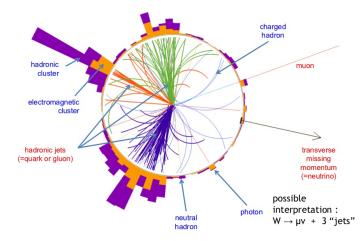
The Dirty Picture

- Multiple production processes for Higgs.
- Multiple decay processes for Higgs.
- Multiple final states for decay products W^{\pm} , Z, τ , b,
- High luminosity for large data set -> Pile Up Multiple interactions in same BC, small interval between BC
- Limited detector aeecptance, resolution, efficiency poor in the forward region
 - particle identification, 4-momenta measurement
 - reconstruction of Higgs, mass measurement
 - overall efficiency of Higgs identification
 - classification of events
 - distributions (p_T , η), ...reconstruction of Higgs properties


The Dirty Picture

- Signal size ($\sigma \times BR$) is very small compared to the possible background processes.
- Many searches have multiple final states for the signal. Reducible and irreducible) background processes for each final state, have to be understood and their contribution estimated.
- Multivariate Analysis (MVA) techniques are being used for better exploitation of the data needs caution/understanding

The Detectors


The particles produced in a collision pass through the detector energy loss is converted into digital signals

A $r - \phi$ slice of the CMS detector in the central region.

Manas Maity (Visva-Bharati)

The Detectors

 $\mathcal{O}(10,000,000)$ pieces of information: energy deposits, positions \rightarrow few objects: γ , e, μ , τ , j, j_b , \not{E}_T , track, vertex \rightarrow higher level objects J/ψ , Υ , B_s , W, Z, H, t,...

Manas Maity (Visva-Bharati)

A Standard and Model Higgs

05/12/2017, 2017 11/42

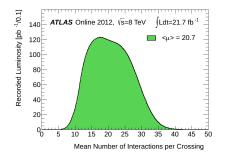
Standard (Model independent) Declarations

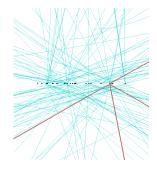
Unless specifically mentioned

- for any process the charge conjugate process is also implied
- *τ_h* denotes the visible/reconstructed part of a *τ* lepton that has decayed into hadron(s) and a *ν_τ*
- ℓ represents either of e, μ
- *j* and *j_b* represent an ordinary jet (quark or gluon) and a b-tagged jet respectively
- V represents either of Z and W

The Detectors

Mis-identification and mis-measurement are serious problems:

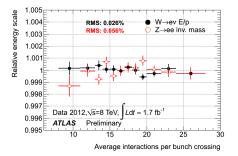

Object	Source of fake	
е	j	bremstrahlung in the tracker
γ	j	conversion in the tracker
au	$\boldsymbol{e},\ \mu,\ \boldsymbol{j}$	missing $ u$ s
Ĵь	j	purity, efficiency
Ę⊤	mismeasurement of jets	$\not\!$

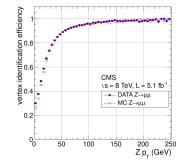

QCD events are background to almost all analyses due to mis-identification.

Various techniques to estimate background using data reduce MC dependence control systematic error

High Luminosity - Pile UP

Pile Up observed by ATLAS in 2012, 8TeV data.

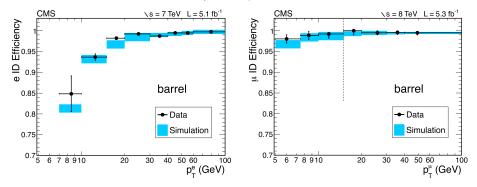




CMS $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ event with 24 reconstructed vertices.

Detector Performance

ATLAS electron detection efficiency.



CMS vertex detection efficiency.

Detector Performance

Lepton identification efficiency using a tag-and-probe technique Z and J/ψ dilepton events.

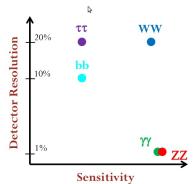
Electron (7 TeV, left) and muon (8 TeV, right)

Monte Carlo Simulation

- Generation of signal and background events understand event characteristics - kinematic distributions
- Fast detector simulation parametric smearing of four-momenta, tracks

fast generation of simulated events

 Complete detector simulation - Geant based - detailed simulation of detector response, detector noise, electronic noise and digitization understanding detector response, data


Important for estimating feasibility of an analysis, expected result, fine-tuning analysis strategy, selection cuts, ...

Analysis Strategy

- Branching ratios
- Irreducible background processes
- the detectors' capabilities

Three classes of SM Higgs analyses

- High sensitivity, good m_H resolution $H \rightarrow \gamma \gamma$, $ZZ^*(\ell^+\ell^-\ell^+\ell^-, \ell^+\ell^-\tau_h^+\tau_h^-)$
- High sensitivity, poor m_H resolution $H \rightarrow W^+ W^-$
- Low sensitivity, poor m_H resolution $H \rightarrow b\bar{b}, \ \tau_h^+ \tau_h^-$

Analysis Strategy

- reduce the background (b) as much as possible
- model/estimate b: MC, Data Driven Method
- get the data, estimate errors statistical, systematic (theory, experiment)
- Compare the data with background/model predictions

For a specific production process and a decay mode, $i \rightarrow H \rightarrow f$, we define the signal strengths:

production

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}}$$

decay

$$\mu^f = \frac{B^f}{(B^f)_{SM}}$$

combined for production & decay

$$\mu_{i}^{f} = \mu_{i}.\mu^{f} = \frac{\sigma_{i}.B^{f}}{(\sigma_{i})_{SM}.(B^{f})_{SM}}$$

L

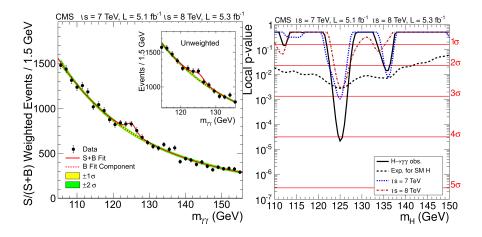
Analysis Strategy

Expected significance is computed for the hypothesis background + SM signal with $\mu = 1$.

$$q_0 = -2 \, \mathit{ln} rac{\mathcal{L}(\mathit{obs} \mid b, \hat{ heta}_0)}{\mathcal{L}(\mathit{obs} \mid \hat{\mu}.s + b, \hat{ heta})}$$

b, **s** - expectations for background, signal - SM μ - signal strength compared to the SM: $\mu = 0$ means no signal θ - represents the nuisance paramaters (systematic uncertainties)

 p_0 - local p-value - probability to obtain a value q_0 at least as large as the one observed in data, q_0^{obs} , under *b*-only hypothesis:

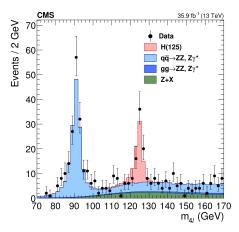

$$oldsymbol{p}_0 = oldsymbol{P}\left(oldsymbol{q}_0 \geq oldsymbol{q}_0^{obs} \mid b
ight)$$

Identified as the best channel in early studies/TDR for low m_H

- Branching Ratio/Signal size is very small
- photon reconstruction/identification challenging
 - photon conversion before the ECAL
 - isolation high PU
- Huge background ISR/FSR, misidentification of jets
- excellent mass reconstruction: $\sigma(m_{\gamma\gamma}) \sim \mathcal{O}(GeV)$
- Multivariate Analysis (MVA) achieves better sensitivity than simple criteria based analysis.

Results Observation of Higgs

$H \rightarrow \gamma \gamma$


Observed (Expected) significance at 125 GeV is $3.2\sigma(4.2\sigma)$ Best fit $\sigma_{exp}/\sigma_{SM} = 0.8 \pm 0.3$

A Standard and Model Higgs

$H \rightarrow ZZ^* \rightarrow 4I$

- e, μ are clean and well measured
- small background (B)- ZZ, ZZb \overline{b} , $t\overline{t}$, WZ, Z + nj
- Reco/ID problems bremstrahlung in the tracker, high PU
- Reco/ID problems final states with τ
- $\sigma(m_{4l}) \sim \mathcal{O}(1\%)$ for $\ell^+ \ell^- \ell^+ \ell^-$, small signal (S)

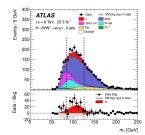
Higgs Mass: CMS : $H \rightarrow ZZ \rightarrow 4\ell$: 35.9 fb⁻¹ at 13 TeV

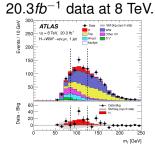
 $m_H = 125.26 \pm 0.20(stat) \pm 0.08(syst) \text{ GeV}$ $\mu = 1.05^{+0.15}_{-0.14}(stat)^{+0.11}_{-0.09}(syst) = 1.05^{+0.19}_{-0.17} (m_H = 125.09 \text{ GeV})$

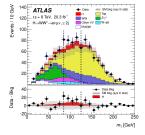
JHEP 11 (2017) 047

$H \rightarrow WW$

- large signal size
- measurement of HWW coupling
- invariant mass reconstrucion is not possible instead use


$$m_{T} = \left[\left(E_{T}^{\ell^{+}\ell^{-}} + \not\!\!\!E_{T} \right)^{2} + | \vec{p}_{T}^{\ell^{+}\ell^{-}} + \not\!\!\!E_{T}^{\prime} |^{2} \right]^{1/2}$$


- no narrow mass peak wide signal shape
- irreducible background $pp \rightarrow WW, ZZ, \ell^+\ell^-, t\bar{t}$

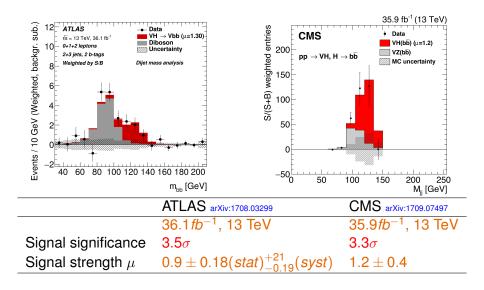

Results

Observation of Higgs

$\textbf{ATLAS -} H \rightarrow WW$

JHEP08 (2016) 104

$H \to f \bar{f}$

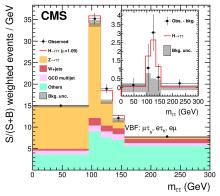

- Investigating the properties of the scalar couplings to the fermions
- $BR(H \rightarrow b\bar{b}) = 0.58$ is large, BUT
 - overwhelming background: $b\bar{b}$, V + jets, $t\bar{t}$, single-top, VV, QCD
 - fake b-tag
 - not so good resolution for m_{jbjb}
- $BR(H \rightarrow \tau^+ \tau^-) = 0.064$ not too small, BUT
 - huge background: W + jets, Z + jets, VV, $t\bar{t}$ and even $H \rightarrow WW$
 - au reconstruction-identification efficiency is moderate
 - fakes: huge QCD jet background contribute
 - poor resolution: $m_{\tau^+\tau^-}$

You can not argue with your Nature.

Observation of Higgs

Results

WH, $ZH \rightarrow b\bar{b}$


Manas Maity (Visva-Bharati)

 $35.9 fb^{-1}$ data at 13 TeV. Signal significance 4.7σ .

$$\frac{\sigma_{i}.B^{f}}{(\sigma_{i})_{SM}.(B^{f})_{SM}} = 1.09^{+0.27}_{-0.26}$$

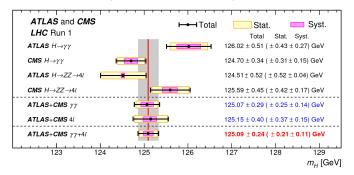
arXiv:1708.00373

Results

Properties of Higgs

Definitions

production $\mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}}$ $\mu^f = \frac{B^f}{(B^f)_{SM}}$ decay $\mu_i^f = \mu_i . \mu^f = \frac{\sigma_i . B^f}{(\sigma_i)_{\text{SM}} . (B^f)_{\text{SM}}}$ combined for production & decay $\kappa_j^2 = \frac{\sigma_j}{\sigma_i^{SM}} = \frac{\Gamma_j}{\Gamma_i^{SM}}$ coupling modifier $\kappa_H^2 = \Sigma_j \kappa_j^2 \cdot B_{SM}^J = \frac{\Gamma_H}{\Gamma_s^{SM}}, \ \frac{(1 - B_{BSM}) \cdot I_H}{\Gamma_s^{SM}}$ coupling modifier $0.74.\kappa_{14}^2 + 0.26\kappa_7^2$ $\sigma(VBF)$


The signal yield in a category k,

$$n_{signal}(k) = \mathcal{L}(k).\Sigma_{i}\Sigma_{j}\left(\sigma_{i}.A_{i}^{f,SM}(k).\epsilon_{i}^{f}(k).B^{f}\right)$$
$$= \mathcal{L}(k).\Sigma_{i}\Sigma_{j}\mu_{i}\mu^{f}\left(\sigma_{i}^{SM}.A_{i}^{f,SM}(k).\epsilon_{i}^{f}(k).B_{SM}^{f}\right)$$

$\mathcal{L}(k)$: integrated luminosity used for category k $A_{j}^{f,SM}(k)$: detector acceptance for SM Higgs production and decay $\epsilon_{j}^{r}(k)$: overall selection efficiency for the signal category k

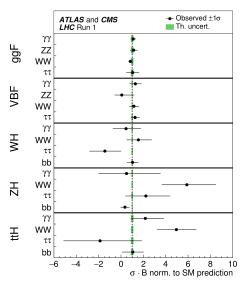
Higgs Mass

Combined CMS and ATLAS results: $5fb^{-1}$ at $\sqrt{7}$ TeV, $20fb^{-1}$ at $\sqrt{s} = 8$ TeV

A lot of interest generated by the difference in masses in the early measurements!

PRL 114 (2015) 191803

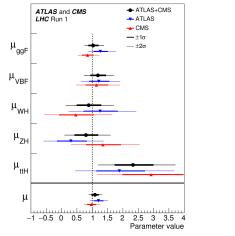
Definitions

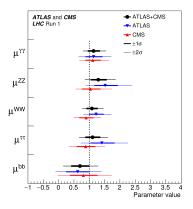

σ and B ratio parameterisation	Coupling modifier ratio parameterisation	
$\sigma(gg \to H \to ZZ)$	$\kappa_{gZ} = \kappa_g \cdot \kappa_Z / \kappa_H$	
$\sigma_{ m VBF}/\sigma_{gg m F}$		
σ_{WH}/σ_{ggF}		
σ_{ZH}/σ_{ggF}	$\lambda_{Zg} = \kappa_Z / \kappa_g$	
$\sigma_{ttH}/\sigma_{gg m F}$	$\lambda_{tg} = \kappa_t / \kappa_g$	
$\mathbf{B}^{WW}/\mathbf{B}^{ZZ}$	$\lambda_{WZ} = \kappa_W / \kappa_Z$	
$\mathrm{B}^{\gamma\gamma}/\mathrm{B}^{ZZ}$	$\lambda_{\gamma Z} = \kappa_{\gamma}/\kappa_{Z}$	
$B^{ au au}/B^{ZZ}$	$\lambda_{ au Z} = \kappa_{ au} / \kappa_Z$	
B^{bb}/B^{ZZ}	$\lambda_{bZ} = \kappa_b / \kappa_Z$	

Properties of Higgs

Results: Production & Decay

5*fb*⁻¹ at $\sqrt{7}$ TeV, 20*fb*⁻¹ at $\sqrt{s} = 8$ TeV Combined ATLAS and CMS measurement of σ .*BR*

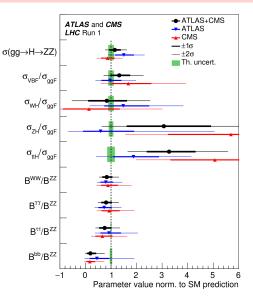

for different processes normalized to their SM values (μ_i^f) .



Results

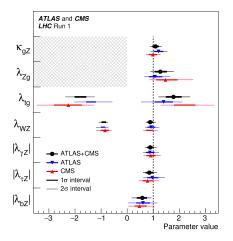
Properties of Higgs

Results: Production & Decay



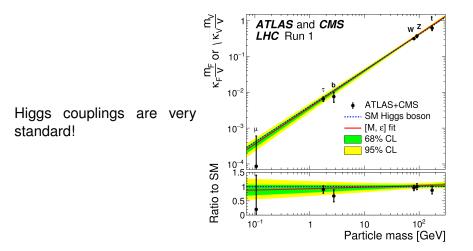
Global signal strength

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}(stat)^{+0.04}_{-0.04}(expt)^{+0.04}_{-0.04}(thbgd)^{+0.07}_{-0.06}(expt)$

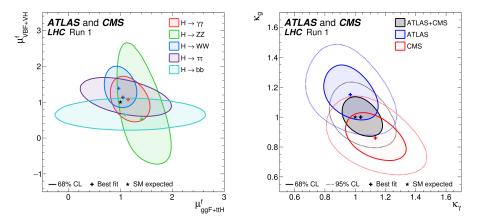

Properties of Higgs

Results: Ratios

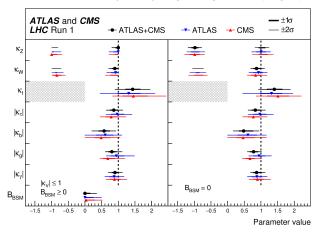
Results


Best fit values of ratios of Higgs boson coupling modifiers, for the combination of the ATLAS and CMS measurements.

Results


Properties of Higgs

Higgs Couplings


Results: Compatibility

Compatibility of different measurements

Results: New Physics?

Fit results allowing BSM loop couplings $B_{BSM} \ge 0$, $|\kappa_V| \le 1$ (Left) without BSM loop couplings $B_{BSM} = 0$ (Right)

Higgs Couplings

- A large number of measurements have been made in the Higgs sector
- Detailed study of Higgs properties from all possible angles
- It is a very Standard and Model Higgs. Very little clue for New Physics
- High luminosity : measurements will be more challenging
- High luminosity may bring out discripancies within the SM

We do not know yet if SUSY is the New Physics.

Fall of the Standard Model and the advent of New Physics are equally inevitable.

Effective Coupling Modifiers

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	-		$0.74\cdot\kappa_W^2+0.26\cdot\kappa_Z^2$
$\sigma(WH)$	-	_		κ_W^2
$\sigma(qq/qg \to ZH)$	_	-		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t-Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	-	-		κ_t^2
$\sigma(gb \to tHW)$	-	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \rightarrow tHq)$	-	t-W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	-	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		$\frac{\kappa_Z^2}{\kappa_Z^2}$
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59\cdot\kappa_W^2+0.07\cdot\kappa_t^2-0.66\cdot\kappa_W\kappa_t$
Γττ	-	_		κ_{τ}^2
Γ^{bb}	-	_		κ_b^2
$\Gamma^{\mu\mu}$	_	-		κ _μ ²

Manas Maity (Visva-Bharati)