breaking news from the hot-dense land: how far can we go? how high can we reach?

Swagato Mukherjee

November 2019, TIFR, Mumbai

HotQCD: Phys. Lett. B795, 15 (2019) Mukherjee & Skokov: arXiv:1909.04639

how far can we go? QCD phase boundary & radius of convergence in μ_B

chiral transition, 2nd order, 3-d O(4) $(m_u = m_d \rightarrow 0)$

chiral crossover $(m_u = m_d = m_l^{\text{phys}})$

$$T_{\rm pc}(\mu_B) = T_{\rm pc}(0) \left[1 - \kappa_2^B \left(\frac{\mu_B}{T_{\rm pc}(0)} \right)^2 - \kappa_4^B \left(\frac{\mu_B}{T_{\rm pc}(0)} \right)^2 \right]$$

chiral order parameter:

 $\Sigma(T,\mu_B)$

 $\chi(T,\mu_B)$ disconnected chiral susceptibility:

 $\chi^{\Sigma}(T,\mu_{I})$ order parameter susceptibility:

Taylor expansion in chemical potential:

$$\Sigma(T,\mu_B) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\Sigma}(T)}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$$

$$\phi = \frac{1}{f_K^4} \left[m_s \langle \bar{u}u + \bar{d}d \rangle - (m_u + m_d) \langle \bar{s}s \rangle \right]$$
 quark condet

$$= \frac{m_s^2}{f_K^4} \left[\langle (\bar{u}u + \bar{d}d)^2 \rangle - (\langle \bar{u}u \rangle + \langle \bar{d}d \rangle)^2 \right]$$

$$(x_B) = m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_u} \right) \Sigma(T, \mu_B)$$

fluctuation

order

$$\chi(T, \mu_B) = \sum_{n=0}^{\infty} \frac{C_{2n}^{\chi}(T)}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$$

scaling variable:

$$\left[\frac{1}{c} + a_2((T - T_c^0)/T_c^0)^2 \right]$$

HotQCD: PoS LATTICE2016, 372 (2017)

 $\partial_T C_0^{\Sigma}(T), C_2^{\Sigma}(T) \sim m_1^{(\beta-1)/\beta\delta} \partial_z f_G(z)$

 $\partial_T^2 C_0^{\Sigma}(T) = 0$

 $\partial_T C_2^{\Sigma}(T) = 0$

similarly:

 $\chi(T,\mu_B),\chi^{\Sigma}(T) \sim m_1^{(1-\delta)/\delta} f_{\gamma}(z)$

 $\partial_T \chi^{\Sigma}(T), \partial_T C_0^{\chi}(T), C_2^{\chi}(T) \sim m_1^{(\beta - \beta \delta - 1)/\beta \delta} \partial_z f_{\chi}(z)$

 $\partial_T C_0^{\chi}(T) = 0$

 $C_{2}^{\chi}(T) = 0$

 $\partial_T \chi^{\Sigma}(T) = 0$

m > 0: crossover, different susceptibilities can lead to different crossover temperatures

$$T_{\rm pc}(\mu_B=0)$$

$) = 156.5 \pm 1.5 \text{ MeV}$

$$T_{\rm pc}(\mu_B) = T_{\rm pc}(0) \left[1 - \kappa_2^B \left(\frac{\mu_B}{T_{\rm pc}(0)} \right)^2 - \kappa_4^B \left(\frac{\mu_B}{T_{\rm pc}(0)} \right)^2 \right]$$

 $\partial_T \chi(T, \mu_B) = \partial_T C_0^{\chi}(T) + \partial_T C_2^{\chi}(T) + \partial_T C_4^{\chi}(T) + \dots = 0$

$$\kappa_2^{\chi} = \frac{1}{2T^2 \partial_T^2 C_0^{\chi}} \left[T \partial_T C_2^{\chi} - 2C_2^{\chi} \right]$$

 $\kappa_{4}^{X} = \frac{1}{24T^{2}\partial_{T}^{2}C_{0}^{\chi}} \left[-72\kappa_{2}^{X}C_{2}^{\chi} - 4C_{4}^{\chi} + T\partial_{T}C_{4}^{\chi} \right]$ $+ 12\kappa_2^X \left(4T\partial_T C_2^{\chi} - T^2\partial_T^2 C_2^{\chi} + \kappa_2^X T^3\partial_T^3 C_0^{\chi} \right) \right]$

$$n_S = 0, n_Q/n_B = 0.4$$

$$\kappa_2^B = 0.012(4)$$

$$\kappa_4^B = 0.000(4)$$

freeze-out line coincides with the chiral crossover

- along the chiral crossover energy density & entropy density remains constant
- sings of enhanced fluctuations around the phase boundary ?

QCD phase boundary

HotQCD: Phys. Lett. B795, 15 (2019)

(inverse) specific heat @ constant pressure

$$c_p = \frac{T}{(s/n_B)} \left[\frac{\partial (s/n_B)}{\partial T} \right]_p$$

no increase above HRG

constrain location of QCD CEP from radius of convergence of Taylor expansion ?

radius of convergence for \bigcirc baryon number susceptibility:

$$r_{2n}^{\chi} = \sqrt{2n(2n-1) \left| \frac{\chi_{2n}^{B}}{\chi_{2n+2}^{B}} \right|}$$

 $T \ge 135 \text{ MeV}: \chi_8^B < 0$?

 $T \ge 135 \text{ MeV}$: nearest singularity in complex μ_B ?

consistent with $T_c^{\text{CEP}} < T_c^0 = 132^{+3}_{-6} \text{ MeV}$

$$z = z_0 (m_l/m_s)^{-1/\beta\delta} \left[(T - T_c^0)/T_c^0 + \kappa_2^B (\mu_B/T_c^0) \right]$$
$$\frac{\partial}{\partial T} \equiv \kappa_2^B \frac{\partial^2}{\partial (\mu_B/T)^2}$$

$$z = z_0 \ (m_l/m_s)^{-1/\beta\delta} \ \left[\ (T - T_c^0)/T_c^0 \ + \ \kappa_2^B \ (\mu_B/T_c^0)^2 \ \right]$$

$$F_r(m_l, T) \leftarrow \text{non-universal analytic correct}$$

$$(m_l/m_s) \left[a_0 + a_1(T - T_c^0)/T_c^0 + a_2((T - T_c^0)/T_c^0) + a_2(T - T_c^0)/T_c^0 + a_2(T - T_c^0)/T_c^0 + a_2(T - T_c^0)/T_c^0) \right]$$

singularity in complex μ_B

 $m_l > 0, T = T_c^{\text{CEP}}$

 $m_l > 0, T_{pc}(\mu_B) \sim T > T_c^{CEP}$

- singularity in complex μ_B

- - quark-meson mode: functional renormalization group method (Connelly, Johnson & Skokov: to appear)

- singularity in complex μ_R
 - non-universal constants from (L)QCD $\kappa_{4}^{B} = 0.000(4)$

$$T_{\rm pc}(m_l) = T_c^0 \left[1 + \frac{z_p}{z_0} \left(\frac{m_l}{m_s} \right)^{1/\beta\delta} \right]$$

$$1 - 2$$

 z_p : peak-location of scaling function, $f_{\chi}(z)$, for χ

radius of convergence in μ_R

based only on universality & (L)QCD inputs

within O(4) scaling regime $T \sim T_{pc}(\mu_B) \sim T_c^0$

assuming QCD CEP is not in-between

Mukherjee & Skokov: arXiv:1909.04639

Larsen, Meinel, Mukherjee & Petreczky: Phys. Rev. D100, 074506 (2019) Larsen, Meinel, Mukherjee & Petreczky: arXiv:1910.07374 (Phys. Lett. B???)

how high can we reach? excited bottomonia in QGP: 1, 2, 3 ...

sequential suppression of upsilons in QGP?

Zebo Tang: Quark Matter 2019

how does this happen:

 $\Re(V)$!?

 $\Im(V)$?

$\Re(V) + \Im(V)$!?

Alexander Rothkopf: Quark Matter 2019

$m_b > \Lambda_{\text{QCD}}, m_b > \pi T$: lattice NRQCD

• expansion in m_b^{-1} : $\mathcal{O}(v^4) + \mathcal{O}(v^6)$ spin, tree-level tadpole improved • HISQ: $N_f = 2 + 1$, $m_{\pi} = 160$ MeV, m_K^{phys} , 12×48^3

extended bottomonium operators

$$\tilde{\chi} = W\chi, \, \tilde{\psi} = W\psi, \, W = \left[1 + \sigma^2 \Delta^{(2)} / (4N)\right]^N$$

 $R_{\rm rms} = \sqrt{3}\sigma/2 \approx 0.21 \,\,\text{MeV}$

large reductions in the continuum contributions

 χ, ψ : NRQCD (anti-) quark fields, 2-component spinors $\Delta^{(2)}$: covariant lattice Laplacian

$$M_{\text{eff}} = a^{-1}\partial_{\tau}\ln C(\tau)$$
$$C(\tau) = \int d^{3}x \langle O(\tau, x)O^{\dagger}(0, 0) \rangle = \int_{0}^{\infty} e^{-\omega\tau}\rho(\omega)d\omega$$

T = 0: $C^{\text{cont}}(\tau) = C(\tau) - e^{-m\tau}$

... & get rid of it

$$T > 0$$
: $C^{\text{sub}}(\tau) = C(\tau) - C^{\text{cont}}(\tau, T = 0)$

$$M_{\rm eff}^{\rm sub} = a^{-1}\partial_{\tau}\ln C^{\rm sub}(\tau)$$

$$M_{
m eff}^{
m sub} \propto au$$

$$C^{\text{sub}}(\tau) \sim \exp\left[-m\tau + \frac{1}{2}\Gamma^2\tau^2 + \mathcal{O}(\tau^3)\right]$$

simplest spectral function consistent with this:

$$\rho(\omega) \sim A \exp(-i\omega)$$

$$\frac{(\omega - m)^2}{2\Gamma^2} + A_{\rm cut}\delta(\omega - \omega_{\rm cut})$$

 $\Delta M = m(T) - m(T = 0)$

Larsen, Meinel, Mukherjee & Petreczky: Phys. Rev. D100, 074506 (2019)

thermal broadening of $\Upsilon(1S)$, $\eta_b(1S)$

sequential modifications from thermal broadening ?

how to reach the higher states: 1, 2, 3 ... ?

$$C_{\alpha\beta}(\tau) = \int d^3x \langle O_{\alpha}(\tau, x) O_{\beta}^{\dagger}(0, 0) \rangle \qquad O_{\alpha}(\tau, x) = \sum_{r} \mathbf{V}_{\alpha}(\tau, x) \langle O_{\alpha}(\tau, x) - \mathbf{V}_{\beta}(0, 0) \rangle$$

solving discretized Schrodinger equation on a 3-dimensional lattice with a Cornell potential that reproduces T=0 spectrum

 $\Psi(r) \chi(\tau, x + r) \Gamma \psi(\tau, x) + variational technique$ energies by diagonalizing $C_{\alpha\beta}(\tau)$

continuum-subtracted effective masses

$$C^{\text{sub}}_{\alpha}(\tau) \sim \exp\left[-m_{\alpha}\tau + \frac{1}{2}\Gamma^2_{\alpha}\tau^2 + \mathcal{O}(\tau^3)\right]$$

$$\rho_{\alpha}(\omega) \sim A_{\alpha} \exp\left[-\frac{(\omega-m)^2}{2\Gamma_{\alpha}^2}\right] + A_{\rm cut}\delta(\omega-\omega_{\rm cut})$$

$$\Delta M_{\alpha} = m_{\alpha}(T) - m_{\alpha}(T=0)$$

thermal broadening

Larsen, Meinel, Mukherjee & Petreczky: arXiv:1910.07374 (Phys. Lett. B???)

$\Gamma_{1S} < \Gamma_{1P} < \Gamma_{2S} < \Gamma_{2P} < \Gamma_{3S}$

sequential hierarchical pattern according to increasing size

 $T \gtrsim 200 \text{ MeV}$: $\Gamma_{3S} \gtrsim M_{3S} - M_{2S}$ $\Gamma_{2P} \gtrsim M_{2P} - M_{1P}$

Larsen, Meinel, Mukherjee & Petreczky: arXiv:1910.07374 (Phys. Lett. B???)

$$\Gamma_{1S} = 3a_0^2\kappa$$

pNRQCD for open quantum system

$$a_0^{-1} \gg T \sim m_D \gg E$$

$$a_0 = 0.21 \text{ fm}$$

Brambilla, Escobedo, Soto, Vairo: Phys. Rev. D97, 074009 (2018)

