Improvements to sum rules predictions for $V_{u b}$

Aoife Bharucha, CPT Marseille
CKM workshop, Mumbai

Introduction to exclusive $V_{u b}$

- Uncertainty on $\left|V_{u b}\right|^{\text {incl }} \sim 7 \%\left(<2 \%\right.$ on $\left.\left|V_{c b}\right|^{\text {incl }}\right)$ due to large $b \rightarrow c \ell \nu$ background
- Competitive $\left|V_{u b}\right|^{\text {excl }}$ from $B \rightarrow \pi \ell \nu$, depends on $f_{+}\left(q^{2}\right)\left(\right.$ as $\left.m_{l} \rightarrow 0\right)$ from Lattice QCD ($q^{2} \gtrsim 15 \mathrm{GeV}^{2}$) or QCD sum rules on the light-cone (LCSR) $\left(q^{2} \lesssim 6-7 \mathrm{GeV}^{2}\right)$
- Also possible via other B decays, e.g. recent progress in $B \rightarrow \rho \ell \nu, \Lambda_{b} \rightarrow$ $p \ell \nu, B_{s} \rightarrow K \ell \nu$
Obtaining the form factor in Light-cone sum rules:

Leading to:

$$
\Pi_{+}\left(p_{B}^{2}, q^{2}\right)=f_{B} m_{B}^{2} \frac{f_{+}\left(q^{2}\right)}{m_{B}^{2}-p_{B}^{2}}+\int_{s>m_{B}^{2}} d s \frac{\rho_{\mathrm{had}}}{s-p_{B}^{2}},
$$

($\rho_{\text {had }}$ is spectral density of the higher-mass hadronic states)

On the other

hand:
Light-cone expand about $x^{2}=0 \Rightarrow$
$\Pi_{+}\left(p_{B}^{2}, q^{2}\right)=\sum_{n} \int d u \mathcal{T}_{+}{ }^{(n)}\left(u, p_{B}^{2}, q^{2}, \mu^{2}\right) \phi^{(n)}\left(u, \mu^{2}\right)=\int d s \frac{\rho_{\mathrm{LC}}}{s-p_{B}^{2}}$,
$\mathcal{T}_{+}^{(n)}\left(u, \mu^{2}\right)$: perturbatively calculable hard kernels
$\phi^{(n)}\left(u, \mu^{2}\right)$: non-perturbative LCDAs at twist n
e.g. $\mathrm{n}=2,\langle\pi(p)| \bar{u}(0) \gamma_{\mu} \gamma_{5} d(x)|0\rangle=-i f_{\pi} p_{\mu} \int_{0}^{1} d u e^{i \bar{u} p \cdot x} \phi\left(u, \mu^{2}\right)+\ldots$, where $\phi\left(u, \mu^{2}\right)=6 u(1-u) \sum_{n=0}^{\infty} a_{n}\left(\mu^{2}\right) C_{n}^{3 / 2}(2 u-1)$
\longrightarrow Sum rule for $f_{+}\left(q^{2}\right): f_{+}\left(q^{2}\right)=\frac{1}{f_{B} m_{B}^{2}} \int_{m_{b}^{2}}^{s_{0}} d s \rho_{\mathrm{LC}} e^{-\left(s-m_{B}^{2}\right) / M^{2}}$

Status of $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$ for B $\rightarrow \pi$
<2012

- 1997: NLO twist-2 corrections were calculated (A. Khodjamirian et al, [arXiv:hepph/9706303]; E. Bagan, P. Ball and V. M. Braun, [arXiv:hep-ph/9709243])
- 2000: LO corrections up to twist-4 were calculated (A. Khodjamirian et al, [arXiv:hep-ph/0001297])
- 2004: NLO twist-3 corrections (p. Ball and R. Zwicky, [arXiv:hep-ph/0406232])
- 2008: $\overline{\mathrm{MS}} m_{b}$ is used in place of the pole mass (G. Duplancic et al, 2008)
- 2011: Use a_{2}, a_{4} from F_{π}, LCSR + new JLab, Extrapolate by fitting to BCL q^{2} parameterisation (A. Khodjamirian, T. .Mannel, N. Offen, Y. -M. Wang, [arXiv: 1103.2655])

Two-loop corrections (A. Bharucha 1203.1359)

- Test argument that radiative corrections to $f_{+} f_{B}$ and f_{B} should cancel when both calculated in sum rules (2-loop contribution to f_{B} in QCDSR sizeable) \Rightarrow Calculate subset of two-loop radiative corrections for twist-2 contribution to $f_{+}(0) \propto \beta_{0}$
- $f_{+}(0)\left(0.262_{-0.023}^{+0.020}\right)$ at $\mathcal{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ (solid) with uncertainties $\lesssim 9 \%$ (dotted), compared to $\mathcal{O}\left(\alpha_{s}\right)$ result (dashed), as a function of Borel parameter M^{2}
- Despite $\sim 9 \% \mathcal{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ corrections to f_{B}, change in $f_{+}(0)$, only $\sim 2 \%$

Extrapolation and unitarity bounds for the $\mathrm{B} \rightarrow \pi$ form factor (I. S. Imsong, A. Khodjamirian, T. Mannel, D. van Dyk, 1409.7816)

Figure 1. The regions with 68% probability (red) and 95% probability (orange) for all two-dimensional marginalisations of the posterior $P(\vec{\lambda} \mid \mathrm{LCSR})$. The cross marks the best-fit point.

Figure 2. Form factor $f_{B \pi}^{+}\left(q^{2}\right)$ obtained at $q^{2}<12 \mathrm{GeV}^{2}$ from the statistical analysis of LCSR fitted to z -series representation and extrapolated to large q^{2}. The solid lines correspond to the 68% probability envelope and the best fit curve. The green (magenta) points are HPQCD [7] (Fermilab-MILC [8]) lattice QCD results.
\% Use Bayesian analysis: prior distributions for inputs, construct likelihood function based on SR fulfilling mB to 1%, obtain posterior distributions using Bayes theorem
\% Posterior distributions of inputs only different for $\mathrm{s}_{0}:(41 \pm 4) \mathrm{GeV}^{2}$ (\sim gaussian)
\because Fit to BCl exp, find central value of $\mathrm{f}_{+}(0)=0.31 \pm 0.02$: raised due to value $\mathrm{m}_{\mathrm{b}^{\prime}} \mathrm{s}_{0^{\prime}} \mu$
$\%$ Obtaining $f_{+}\left(q^{2}\right)$ and first two derivatives at 0 and $10 \mathrm{GeV}^{2}$ allowed extrapolation to high q2 using improved unitarity bounds
\% Perform Bayesian analysis including experimental results to obtain $\left|V_{u b}\right|$
\therefore Theory uncertainty on $\left|V_{u b}\right|$ obtained from analysis comparable to that of most accurate determinations from inclusive $\mathrm{b} \rightarrow \mathrm{u}$ transitions
$\therefore 2010$ data set agrees better with theory 2013 data set

* Tension wrt GGOU determination seen beyond 99\% C.L.

(a)

(c)

(b)

Figure 4. The two-dimensional marginal posteriors for $\left|V_{u b}\right|$ versus the BCL parameters (a) $f_{B \pi}^{+}(0),(\mathrm{b}) b_{1}^{+}$, and (c) b_{2}^{+}. The dark orange, orange, and light orange regions show, respectively, the $68 \%, 95 \%$ and 99% probability regions when using the " 2013 " data set. The blue contours delineate the corresponding probability regions of the " 2010 " data set. The green and light green vertical bands denote the central value and 68% CL interval of the HFAG world average [39] of the $\left|V_{u b}\right|$ determinations from inclusive decays $B \rightarrow X_{u} \ell \bar{\nu}$ according to the GGOU method [40].
(I. S. Imsong, A. Khodjamirian, T. Mannel, D. van Dyk, 1409.7816)

Update for V_{ub} from B to V (A. Bharucha, D. Straub and R. Zwicky 1503.05534)

- Largest uncertainty in calculation is from form factors
- Best coverage in q^{2} : fit to LCSR/Lattice using series expansion, coefficients satisfy dispersive bounds.(AB, T. Feldmann, M. Wick, arXiv:1004.3249)
- Our Aim: improve uncertainty by making correlations available
- We obtain the four equation of motion relations:
e.g. $T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0$
- Isgur-Wise relations at low recoil follow from $\mathcal{D}_{\iota} /\left(\mathcal{V}_{\iota}\right.$ or $\left.T_{\iota}\right) \sim \mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$, \mathcal{D}_{ι} is derivative FF , breaking of I-W relations.
- Certain combinations of \mathcal{D}_{ι} 's may be small at large recoil: $\iota=1,2$ are
 direct candidates, and combinations of $\iota=3, P$ result in potentially small ratio of \mathcal{D} / T

See that equation of motion works well in most cases, apply same values of sum rules parameters for related FFs with correlations, less correlated for $0+t$ case

Comparison of results for Vub

$\left.\begin{array}{lll} \\ \text { Good agreement } \\ \text { With B to } \pi \text { and } \\ \text { results from } \\ \text { global fits }\end{array}\right)$

Results slightly below but larger uncertainties Note for B to ρ the S-wave contribution needs to be systematically subtracted by Belle and BaBar, which could lead to a 6% upward shift in V_{ub} (see Meissner and Wang, 1305.1311.5420).

Future Prospects

$\therefore \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{Klv}$: Preliminary uncorrelated results for $\mathrm{f}_{+}(0)$ from Khodjamirian, Rusov '16, measurement at LHCb(?)/Belle II
\therefore Twist 5,6 term in factorizable approximation [A. Rusov, in prep] are small, however still missing twist-3 $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ corrections-not so easy!

$f_{B_{s} K}^{+}(0)=0.339_{-0.024}^{+0.029}$
Khodjamirian, Rusov (in prep)

* Future Belle-2 data on the q2-shape of $B \rightarrow \pi l v$ will provide additional constraints on the DA parameters

Summary: exclusive $\mid \mathrm{V}_{\mathrm{ub}}$ in 2016

TABLE 2. Status of exclusive $\left|V_{u b}\right|$ determinations and indirect fits

The latest HFAG simultaneous fit uses two-loop $f_{+}(0)$ from LCSR (AB 1203.1359)

New LCSR result for $V_{u b}$ from B $\rightarrow \rho l \nu$ with comparable errors (AB, Straub, Zwicky 1503.05534)

Exclusive decays	$\left\|V_{u b}\right\| \times 10^{3}$
$\bar{B} \rightarrow \pi l \bar{v}_{l}$	
FLAG 2016 [21]	3.62 ± 0.14
Fermilab/MILC 2015 [131]	3.72 ± 0.16
RBC/UKQCD 2015 [132]	3.61 ± 0.32
HFAG 2014 (lattice) [22]	3.28 ± 0.29
HFAG 2014 (LCSR) [138, 22]	$3.32_{-0.22}^{+0.26}$
Imsong et al. 2014 (LCSR, Bayes an.) [143]	3.52 ± 0.29
Belle 2013 (lattice + LCSR) [126]	
$\bar{B} \rightarrow \omega l \bar{v}_{l}$	$3.31 \pm 0.19_{\exp } \pm 0.30_{\text {th }}$
Bharucha et al. 2015 (LCSR) [146]	
$\bar{B} \rightarrow \rho l \bar{v}_{l}$	$3.29 \pm 0.09_{\exp } \pm 0.20_{\text {th }}$
Bharucha et al. 2015 (LCSR) [146]	
$\Lambda_{b} \rightarrow p \mu v_{\mu}$	3.27 ± 0.23
LHCb (PDG) [147]	
Indirect fits	3.74 ± 0.21
UTfit (2016) [94]	
CKMfitter (2015, 3 σ) [95]	

Lower result for V_{ub} from the Bayesian analysis (Imsong, Khodjamirian, Mannel, van Dyck1409.7816)

