Experimental minireview on SL decays

Excluding results on $\left|\mathrm{V}_{\mathrm{xb}}\right|$ and $\mathrm{R}\left(\mathrm{D}^{(*)}\right)$

Patrick Owen,

on behalf of the LHCb, Belle and BaBar collaborations

CKM 2016-29/11/16

Universität
 Zürich ${ }^{\text {VZH }}$

Why other decays?

- The decays $B \rightarrow D^{(*)} \ell \nu$ allow measurements of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $R\left(D^{(*)}\right)$.
- Motivations for looking elsewhere:
- Complimentary sensitivity/systematics from other b-hadron species.
- Study charm hadron spectroscopy - tests of non-perturbative QCD.
- Feed-down from more exotic hadrons can be important backgrounds.

$B \rightarrow D^{* *} \ell \nu$

- The decays $B \rightarrow D^{(*)} \ell \nu$ make up about 70% of the inclusive semileptonic rate.

$$
\begin{aligned}
\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right) & =(4.95 \pm 0.11) \% \\
\mathcal{B}(B \rightarrow D \ell \nu) & =(2.42 \pm 0.12) \% \\
\mathcal{B}\left(B \rightarrow X_{c} \ell \nu\right) & =(10.65 \pm 0.15) \%
\end{aligned}>(7.37 \pm 0.15) \%
$$

- The rest, which should have a BF of about 3%, is referred to as

$$
B \rightarrow D^{* *} \ell \nu
$$

meson	L	j_{l}	J^{P}	mass $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	width $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$	decay modes
D	0	$1 / 2$	0^{-}	1.867	-	various
D^{*}	0	$1 / 2$	1^{-}	2.009	-	$D \pi, D^{0} \gamma$
D_{0}^{*}	1	$1 / 2$	0^{+}	2.360	0.275	$D \pi^{-}$
D_{1}^{\prime}	1	$1 / 2$	1^{+}	2.427	0.384	$D^{*} \pi^{-}$
D_{1}	1	$3 / 2$	1^{+}	2.422	0.026	$D^{*} \pi^{-}, D \pi^{+} \pi^{-}$
D_{2}^{*}	1	$3 / 2$	2^{+}	2.464	0.043	$D^{*} \pi^{-}, D \pi^{-}$

The four lightest states

- Measurements of the four lightest states performed by the BaBar and Belle.

S. Turczyk, CKM 2012

With just $D^{(*)} \pi$ combinations, get significant gap between sum of exclusives/inclusive measurements.

Measurement of $B \rightarrow D^{(*)} \pi^{+} \pi^{-} \ell \nu$

- More recently, BaBar extended the search to $D^{(*)} \pi^{+} \pi^{-}$
- Use hadronic tagging to improve kinematic discrimination.
- Fit variable $U \equiv E_{\text {miss }}-\left|\vec{p}_{\text {miss }}\right| c$
- Largest systematic uncertainty arises from the knowledge of the contributions to the signal.

Channel	$R_{\pi^{+} \pi^{-}}^{(*)} \times 10^{3}$	$\mathcal{B} \times 10^{5}$
$D^{0} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$71 \pm 13 \pm 8$	$161 \pm 30 \pm 18 \pm 8$
$D^{+} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$58 \pm 18 \pm 12$	$127 \pm 39 \pm 26 \pm 7$
$D^{* 0} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$14 \pm$	$7 \pm$
$D^{*+} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$28 \pm 8 \pm$	$80 \pm 40 \pm 23 \pm 3$
$D \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$67 \pm 10 \pm$	8
$D^{*} \pi^{+} \pi^{-} \ell^{-} \bar{\nu}$	$19 \pm$	$152 \pm 39 \pm 30 \pm 3$

- Belle/LHCb should be able to do acompetitive measurement.

Update to the inclusive/exclusive gap

- Add neutral pion modes using isospin symmetry to get $B F\left(\bar{B} \rightarrow D \pi \pi l^{-} \bar{v}_{l}\right)+B F\left(\bar{B} \rightarrow D^{*} \pi \pi l^{-} \bar{v}_{l}\right)=\left(0.52_{-0.07-0.13}^{+0.14+0.27}\right) \%$

- Gap between sum of exclusives and inclusive now down to $2 / 3 \sigma$.
- What else is missing?
- $B \rightarrow D^{(*)} \eta \ell \nu$?
- Non-resonant?
- More excited states?

From S. Hirose @ FPCP 2016

- Constraints on composition found from moment analysis [F. Bernlochner et al, arXiv:1402.2849]. No signal resonance can fill the gap.

Have opposite problem in t channels

- The decays $B \rightarrow D \tau \nu$ and $B \rightarrow D^{*} \tau \nu$ saturate inclusive rate
- Should also study $B \rightarrow D^{* *} \tau \nu$

- Should have enough signal in LHCb/Belle 2 datasets.

What about $\mathrm{R}\left(\mathrm{D}^{\star \star}\right)$?

- With experimental information, possible to control uncertainty on $R\left(D^{* *}\right)$?

- By fitting data, can get $\sim 10 \%$ on $R\left(D^{* *}\right)$, with different uncertainties depending on hadron species.
- Uses information on fully hadronic decays for the form factor at $q^{2}=0$.

Other b-hadron species

- We can learn more from other b-hadron species.
- For the excited cs system, the $1 / 2$ states are narrow - could shed light on the $1 / 2$ vs $3 / 2$ puzzle?
- Not so well studied, most precise measurement from Belle.

Belle, Phys. Rev. D 92, 072013 (2015)

Phys. Rev. Lett. 117, 061803 (2016)

- Only two helicity states for $D_{s}{ }^{*}+$, form factor measurement would be interesting.

b-bayrons

- Even less studied - semileptonic b-baryon decays.
- Here LHCb should be able to make precise studies - 20\% of b-hadrons are b-baryons.
- Form-factor measurement of the ground state ongoing.
- Should be able to measure also the first two excited states, $\Lambda_{c}(2595)^{+}$ and $\Lambda_{c}(2625)^{+}$.

- Should constrain on $R\left(\bigwedge_{c}{ }^{*}+\right)$, which should also be possible in the near future.

Summary

- There are a couple of puzzles outside the usual $\left|V_{x b}\right|$ and $R\left(D^{(*)}\right)$ ones.
- Inclusive vs exclusive gap.
- $1 / 2$ vs $3 / 2$ puzzle still exists.
- It is important to understand these D** states if we want to convince everyone of the $R\left(D^{*}\right)$ results.
- BaBar has helped with their $B \rightarrow D^{(*)} \pi^{+} \pi^{-} \ell \nu$ measurement.
- More measurements needed for Belle and LHCb!
- Other b-hadron species provide complimentary information looking forward to $\mathrm{B}_{\mathrm{s}}{ }^{0}$ and Λ_{b} measurements.

