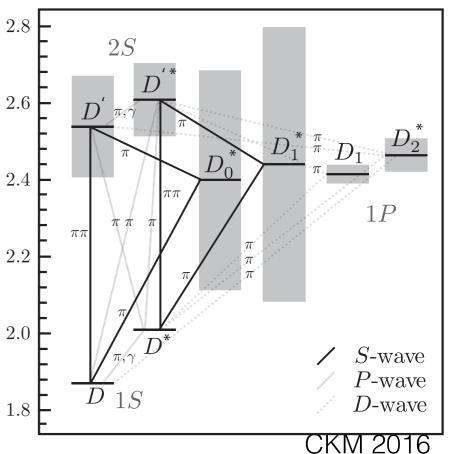
Experimental minireview on SL decays

Excluding results on $|V_{xb}|$ and $R(D^{(*)})$

Patrick Owen, on behalf of the LHCb, Belle and BaBar collaborations

CKM 2016 - 29/11/16

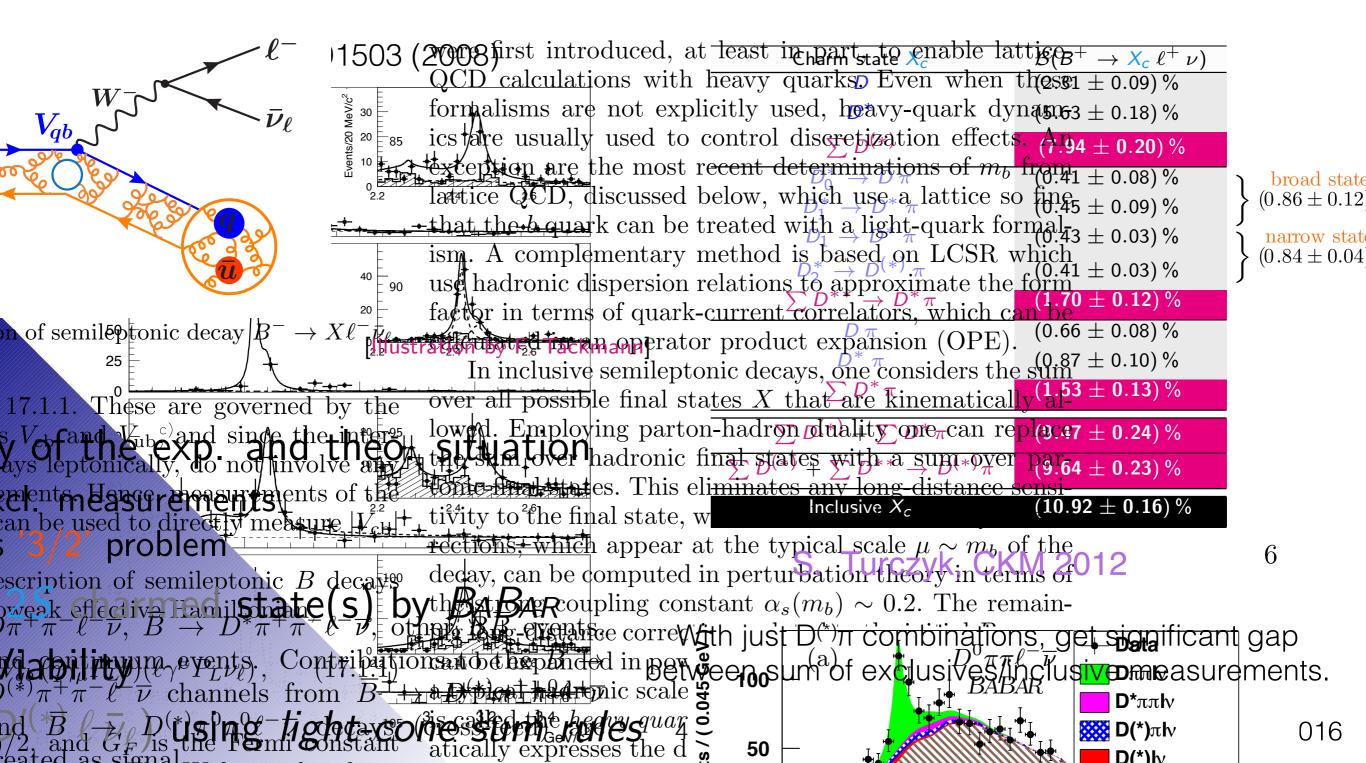
Why other decays?


- The decays $B \to D^{(*)} \ell \nu$ allow measurements of $|V_{cb}|$ and $R(D^{(*)})$.
- Motivations for looking elsewhere:
 - Complimentary sensitivity/systematics from other b-hadron species.
 - Study charm hadron spectroscopy tests of non-perturbative QCD.
 - Feed-down from more exotic hadrons can be important backgrounds.

- The boot 70% of the inclusive
 - $= (1.05 \pm 0.11)\% \\ = (2.42 \pm 0.12)\%$ (7.37 ± 0.15)%

lv

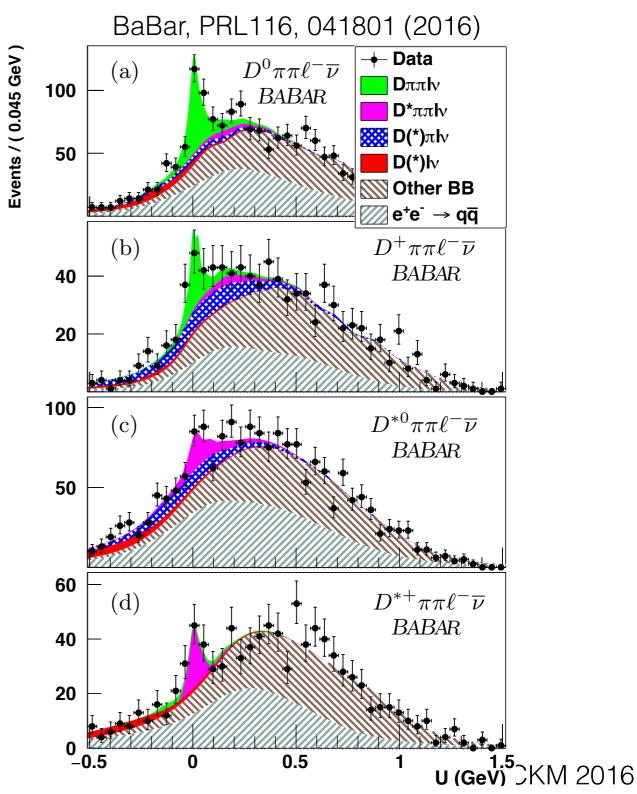
- $X_{2}(2) = (10.65 \pm 0.15)\%$
- The near the matrix of a BF of about 3%, is referred to as $B \rightarrow D$


meson	L	jı	J^P	mass $[GeV/c^2]$	width $[GeV/c^2]$	decay modes	\sim
D	0	1/2	0-	1.867	-	various	(GeV)
D^*	0	1/2	1-	2.009	-	$D\pi, D^0\gamma$	<i>m</i> (
D_0^{\star}	1	1/2	0+	2.360	0.275	$D\pi^-$	
D'_1	1	1/2	1+	2.427	0.384	$D^*\pi^-$	
D_1	1	3/2	1+	2.422	0.026	$D^{*}\pi^{-}, D\pi^{+}\pi^{-}$	
D_2^{\star}	1	3/2	2^{+}	2.464	0.043	$D^*\pi^-, D\pi^-$	

Patrick Owen

The four lightest states

Measurements of the four lightest states performed by the BaBar



Measurement of $B \to D^{(*)} \pi^+ \pi^- \ell \nu$

- More recently, BaBar extended the search to $D^{(*)}\pi^+\pi^-$
- Use hadronic tagging to improve kinematic discrimination.
- Fit variable $U \equiv E_{\text{miss}} |\vec{p}_{\text{miss}}|c|$
- Largest systematic uncertainty arises from the knowledge of the contributions to the signal.

Channel	$R_{\pi^+\pi^-}^{(*)} \times 10^3$	$\mathcal{B} imes 10^5$
$D^0\pi^+\pi^-\ell^-\overline{\nu}$	$71 \pm 13 \pm 8$	$161\pm30\pm18\pm8$
$D^+\pi^+\pi^-\ell^-\overline{\nu}$	$58 \pm 18 \pm 12$	$127 \pm 39 \pm 26 \pm 7$
$D^{*0}\pi^+\pi^-\ell^-\overline{\nu}$	$14 \pm 7 \pm 4$	$80 \pm 40 \pm 23 \pm 3$
$D^{*+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}$	$28 \pm 8 \pm 6$	$138\pm39\pm30\pm3$
$D\pi^+\pi^-\ell^-\overline{ u}$	$67 \pm 10 \pm 8$	$152\pm23\pm18\pm7$
$D^*\pi^+\pi^-\ell^-\overline{\nu}$	$19 \pm 5 \pm 4$	$108 \pm 28 \pm 23 \pm 4$

• Belle/LHCb should be able to do a competitive measurement. 5

Update to the inclusive/exclusive gap

• Add neutral pion modes using isospin symmetry to get $BF(\overline{B} \rightarrow D\pi\pi l^- \overline{\nu_l}) + BF(\overline{B} \rightarrow D^*\pi\pi l^- \overline{\nu_l}) = (0.52^{+0.14+0.27}_{-0.07-0.13})\%$

$$BF(D^{(*)}l\overline{v}_{l}) + BF(D^{(*)}\pi l\overline{v}_{l}) \longrightarrow$$

$$BF(D^{(*)}l\overline{v}_{l}) + BF(D^{(*)}\pi l\overline{v}_{l}) + BF(D^{(*)}\pi\pi l\overline{v}_{l})$$

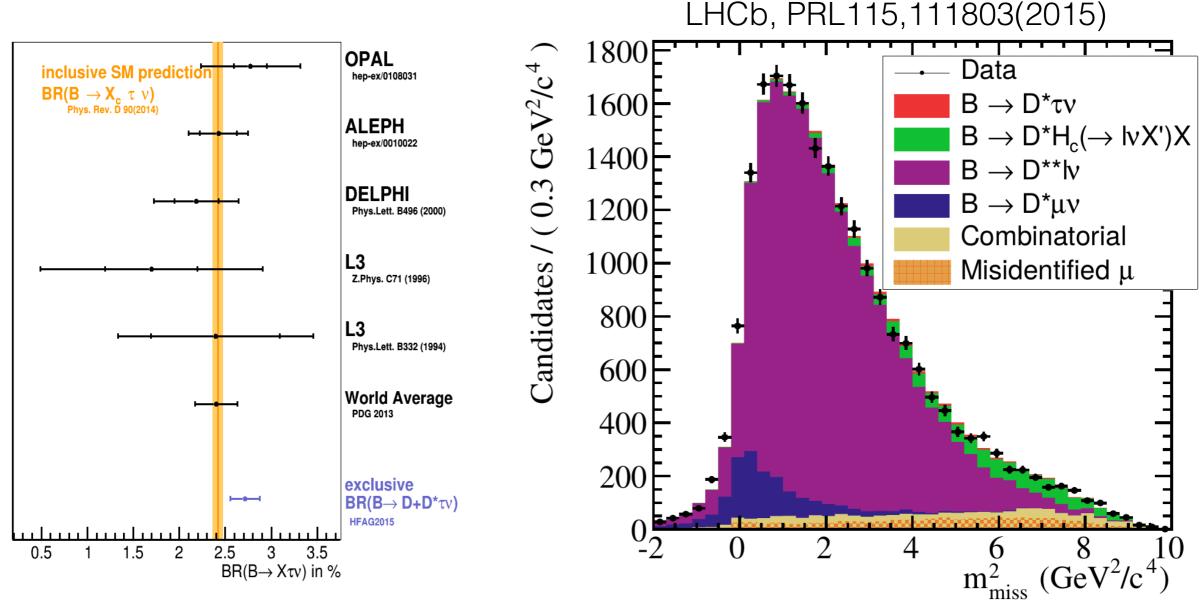
$$Inclusive BF(X_{c}^{-1}\overline{v}_{l}) \longrightarrow$$

$$6.5 \ 7 \ 7.5 \ 8 \ 8.5 \ 9 \ 9.5 \ 10 \ 10.5 \ 11 \ 11.5$$
Branching fraction (%)
$$From S \ Hirose @ EPCP 2016$$

- Gap between sum of exclusives
 and inclusive now down to 2/3 σ.
- What else is missing?

•
$$B \to D^{(*)} \eta \ell \nu$$
 ?

- Non-resonant?
- More excited states?

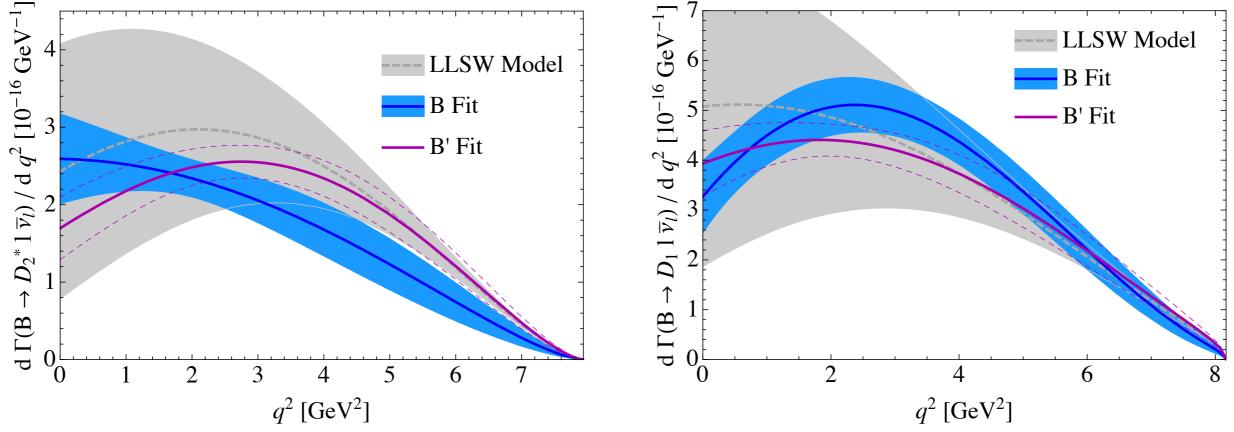

CKM 2016

- FIUITI 5. MITUSE W FFCF 2010
 - Constraints on composition found from moment analysis [F. Bernlochner et al, arXiv:1402.2849]. No signal resonance can fill the gap.

Patrick Owen

Have opposite problem in t channels

- The decays $B \to D \tau \nu$ and $B \to D^* \tau \nu$ saturate inclusive rate
- Should also study $B \to D^{**} \tau \nu$

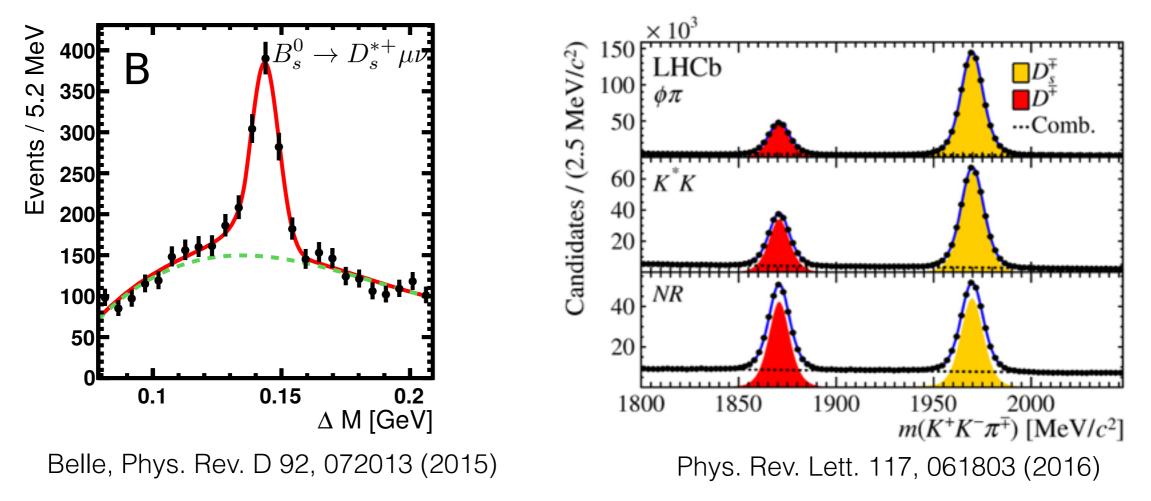


• Should have enough signal in LHCb/Belle 2 datasets.

Patrick Owen

What about R(D**)?

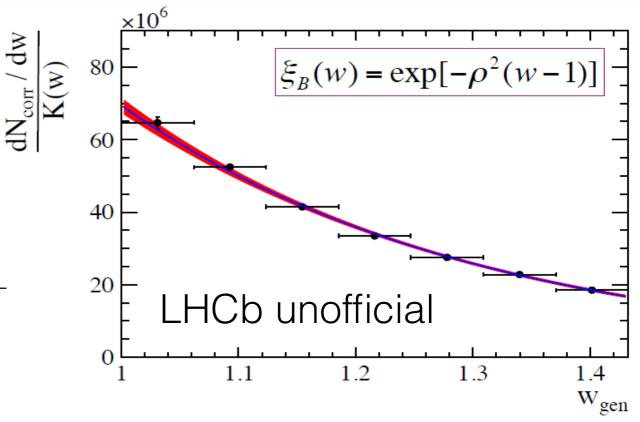
With experimental information, possible to control uncertainty on R(D**)?



F. Bernlochner and Z. Ligeti: arXiv:1606.09300

- LHCb Semilep Workshop By fitting data, can get ~10% on R(D**), with different uncertainties depending on hadron species.
- Uses information on fully hadronic decays for the form factor at q²=0. $^{\rm 8}$ CKM 2016

Other b-hadron species


- We can learn more from other b-hadron species.
- For the excited cs system, the 1/2 states are narrow could shed light on the 1/2 vs 3/2 puzzle?
- Not so well studied, most precise measurement from Belle.

• Only two helicity states for D_s^{*+} , form factor measurement would be interesting.

b-bayrons

- Even less studied semileptonic b-baryon decays.
- Here LHCb should be able to make precise studies 20% of b-hadrons are b-baryons.
- Form-factor measurement of the ground state ongoing.
- Should be able to measure also the first two excited states, $\Lambda_c(2595)^+$ and $\Lambda_c(2625)^+$.

 Should constrain on R(Λ_c*+), which should also be possible in the near future.

Summary

- There are a couple of puzzles outside the usual $\left|V_{xb}\right|$ and $R(D^{(*)})$ ones.
 - Inclusive vs exclusive gap.
 - 1/2 vs 3/2 puzzle still exists.
- It is important to understand these D** states if we want to convince everyone of the R(D*) results.
- BaBar has helped with their $B \to D^{(*)} \pi^+ \pi^- \ell \nu$ measurement.
 - More measurements needed for Belle and LHCb!
- Other b-hadron species provide complimentary information looking forward to B_s^0 and Λ_b measurements.